Skip to main content
Log in

Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The circadian system in suprachiasmatic nucleus (SCN) involves regulated serotonin levels and coordinated expression of various clock genes. To understand circadian disfunction in the age-related neurodegenerative disorder Parkinson’s disease (PD), the rotenone-induced PD (RIPD) male Wistar rat model was used. The alterations in the rhythmic dynamic equilibrium of interactions between the various components of serotonin metabolism and the molecular clock were measured. There was significant decrease in the mean 24 h levels of tryptophan, 5-hydroxytryptophan (5-HTP), serotonin (5-HT), N-acetyl serotonin (NAS) and melatonin (MEL) by approximately 63, 51, 76 and 96 % respectively ( p ≤ 0.05). However significant increase in 5-methoxy indole acetic acid (5-MIAA), 5-methoxy tryptophol (5-MTOH), 5-hydroxy tryptophol (5-HTOH) indicated increased serotonin catabolism with the abolition of daily rhythms of MEL, 5-HTP and 5-MIAA in RIPD. 24 h mean levels of rPer1, rCry1, rBmal1 reduced by about 0.5, 0.74 and 0.39-fold and increased for rPer2 by about 1.7-fold. The daily pulse of rPer2, rCry1, rCry2 and rBmal1 significantly decreased by 0.36, 0.6, 0.14, 0.1 and 0.2-fold. As melatonin, an antioxidant and an endogenous synchronizer of rhythm declined in RIPD male Wistar rat model, the effects of melatonin-administration on the rhythmic expression of various clock genes were studied. Interestingly, melatonin-administration resulted in restoration of the phase of rPer1 daily rhythm in RIPD indicating differential sensitivity of various clock components towards melatonin. The animals which were administered both rotenone and MEL for 48 days interestingly showed neuroprotective effects in dark phase on correlations between expression of various genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:61–67

    Google Scholar 

  • Aguiar LM, Macedo DS, de Freitas RM, de Albuquerque OA, Vasconcelos SM, de Sousa FC, de Barros Viana GS (2005) Protective effects of N-acetylserotonin against 6-hydroxydopamine-induced neurotoxicity. Life Sci 76:2193–2202

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324

    Article  CAS  PubMed  Google Scholar 

  • Azmitia EC, Nixon R (2008) Dystrophic serotonergic axons in neurodegerative diseases. Brain Res 1217:185–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Beyer K (2007) Mechanistic aspects of Parkinson’s disease: a-synuclein and the Biomembrane. Cell Biochem Biophys 47:285–299

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  • Cai Y, Liu S, Sothern RB, Xu S, Chan P (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 17:550–554

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE (2005) Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 20:360–371

    Article  CAS  PubMed  Google Scholar 

  • Cuesta M, Mendoza J, Clesse D, Pévet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210:501–513

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • De Blas AL, Cherwinski HM (1983) Detection of antigens on nitrocellulose paper immunoblots with monoclonal antibodies. Anal Biochem 133:214–219

    Article  PubMed  Google Scholar 

  • Fertl E, Auff E, Doppelbauer A, Waldhauser F (1993) Circadian secretion pattern of melatonin in de novo Parkinsonian patients: evidence for phase-shifting properties of L-dopa. J Neural Transm Park Dis Dement Sect 5:227–234

    Article  CAS  PubMed  Google Scholar 

  • Gillies GE, Pienaar IS, Vohra S, Qamhawi Z (2014) Sex differences in Parkinson’s disease. Front Neuroendocrinol 35:370–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grady RK Jr, Caliguri A, Mefford IN (1984) Day/night differences in pineal indoles in the adult pigeon. Comp Biochem Physiol C 78:141–143

    Article  PubMed  Google Scholar 

  • Gravotta L, Gavrila AM, Hood S, Amir S (2011) Global Depletion of Dopamine Using Intracerebroventricular 6-Hydroxydopamine Injection Disrupts Normal Circadian Wheel-Running Patterns and PERIOD2 Expression in the Rat Forebrain. J Mol Neurosci 45:162–171

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Nakamura K (2010) Tryptophan hydroxylase and serotonin synthesis regulation. In: Müller C, Jacobs B (eds) Handbook of behavioral neurobiology of serotonin. Elsevier B. V., Amsterdam, pp 183–202

    Chapter  Google Scholar 

  • Hasegawa S, Kanemaru K, Gittos M, Diksic M (2005) The tryptophan hydroxylase activation inhibitor, AGN-2979, decreases regional 5-HT synthesis in the rat brain measured with alpha-[14C]methyl-l-tryptophan: an autoradiographic study. Brain Res Bull 67:248–255

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Matsunaga N, Okazaki H, Kakimoto K, Kimura Y, Azuma H, Ikeda E, Shiba T, Yamato M, Yamada K, Koyanagi S, Ohdo S (2013) A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson’s disease. Neuromolecular Med 15:238–251

    Article  CAS  PubMed  Google Scholar 

  • He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, Le W (2003) Role of nitric oxide in rotenone-induced nigro-strital injury. J Neurochem 86:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Heffner TG, Hartman JA, Seiden LS (1980) A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav 13:453–456

    Article  CAS  PubMed  Google Scholar 

  • Holmes SW, Sugden D (1982) Effects of melatonin on sleep and neurochemistry in the rat. Br J Pharmacol 76:95–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hood S, Cassidy P, Cossette MP, Weigl Y, Verwey M, Robinson B, Stewart J, Amir S (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci 30:14046–14058

    Article  CAS  PubMed  Google Scholar 

  • Horikawa K, Yokota S, Fuji K, Akiyama M, Moriya T, Okamura H, Shibata S (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci 15:5867–5873

    Google Scholar 

  • Iacono RP, Kuniyoshi SM, Ahlman JR, Zimmerman GJ, Maeda G, Pearlstein RD (1997) Concentrations of indoleamine metabolic intermediates in the ventricular cerebrospinal fluid of advanced Parkinson’s patients with severe postural instability and gait disorders. J Neural Transm 104:451–459

    Article  CAS  PubMed  Google Scholar 

  • Imbesi M, Yildiz S, Dirim Arslan A, Sharma R, Manev H, Uz T (2009) Dopamine receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience 158:537–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inden M, Kondo J, Kitamura Y (2003) Differences in rotational asymmetry in rats caused by single intranigral injections of 6-hydroxydopamine, 1-methyl-4-phenylpyridinium ion and rotenone. Biog Amines 17:281–291

    Article  CAS  Google Scholar 

  • Jagota A (2006) Suprachiasmatic nucleus: the center for circadian timing system in mammals. Proc Indian Natl Sci Acad B71:275–288

    Google Scholar 

  • Jagota A (2012) Age-induced alterations in biological clock: therapeutic effects of melatonin. In: Thakur MK, Rattan SIS (eds) Brain aging and therapeutic interventions. Springer, Netherlands, London, pp 111–129

  • Jagota A, Kalyani D (2010) Effect of melatonin on age-induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male wistar rat. Biogerontology 11:299–308

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, Reddy MY (2007) The effect of curcumin on ethanol induced changes in suprachiasmatic nucleus (SCN) and pineal. Cell Mol Neurobiol 27:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Jang SW, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM, Ye K (2010) N-acetylserotonin activates TrkB receptor in a circadianrhythm. Proc Natl Acad Sci USA 107:3876–3881

  • Jordan SD, Lamia KA (2013) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 366:163–169

  • Kamphuis W, Cailotto C, Dijk F, Bergen A, Buijs RM (2005) Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem Biophys Res Commun 330:18–26

    Article  CAS  PubMed  Google Scholar 

  • Khaldy H, León J, Escames G, Bikjdaouene L, García JJ, Acuña-Castroviejo D (2002) Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology 75:201–208

    Article  CAS  PubMed  Google Scholar 

  • Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP (2009) Antioxidant N-acetyl-l-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging (Albany NY) 1:979–987

    CAS  Google Scholar 

  • Kudo T, Loh DH, Truong D, Wu Y, Colwell CS (2011) Circadian dysfunction in a mouse model of Parkinson’s disease. Exp Neurol 232:66–75

    Article  PubMed  Google Scholar 

  • Kuhn DM, Sykes CE, Geddes TJ, Jaunarajs KL, Bishop C (2011) Tryptophan hydroxylase 2 aggregates through disulphide cross-linking upon oxidation: possible link to serotonin deficits and non-motor symptoms in Parkinson’s disease. J Neurochem 116:426–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lucas G, De Deurwaerdere P, Caccia S, Spampinato U (2000) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT2A and 5-HT2C receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Mammen AP, Jagota A (2011) Immunocytochemical evidence for different patterns in daily rhythms of VIP and AVP peptides in the suprachiasmatic nucleus of diurnal Funambulus palmarum. Brain Res 1373:39–47

    Article  CAS  PubMed  Google Scholar 

  • Manikonda PK, Jagota A (2012) Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerentology 13:511–524

    Article  CAS  Google Scholar 

  • Mattam U, Jagota A (2014) Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Duan W, Wan R, Guo Z (2004) Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx 1:111–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Maximino C (2012) Serotonin and anxiety in neurochemical, pharmacological, and funtional aspects, Springer, p 111

  • Mefford IN, Barchas JD (1980) Determination of tryptophan and metabolites in rat brain and pineal tissue by reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr 181:187–193

    Article  CAS  PubMed  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moranta D, Barceló P, Aparicio S, Garau C, Sarubbo F, Ramis M, Nicolau C, Esteban S (2014) Intake of melatonin increases tryptophan hydroxylase type 1 activity in aged rats: preliminary study. Exp Gerontol 49:1–4

    Article  CAS  PubMed  Google Scholar 

  • Muradian KK, Utko NA, Mozzhukhina TG, Litoshenko AY, Pishel IN, Bezrukov VV, Fraifield VE (2002) Pair-wise linear and 3D nonlinear relationships between the liver antioxidant enzyme activities and the rate of body oxygen consumption in mice. Free Radic Biol Med 33:1736–1739

    Article  CAS  PubMed  Google Scholar 

  • Pazo D, Cardinali DP, Cano P, Reyes Toso CA, Esquifino AI (2002) Age-related changes in 24-hour rhythms of norepinephrine content and serotonin turnover in rat pineal gland: effect of melatonin treatment. Neurosignals 11:81–87

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin: Exceeding Expectations Physiology 5:325–333

  • Sawada M, Nagatsu T, Nagatsu I, Ito K, Lizuka R, Kondo T, Narabayashi H (1985) Tryptophan hydroxylase activity in the brains of controls and parkinsonian patients. J Neural Transm 62:107–115

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL, Slevin JT (1985) Determination of tyrosine, tryptophan and their metabolic derivatives by liquid chromatography-electrochemical detection: application to post mortem samples from patients with Parkinson’s and Alzheimer’s disease. Life Sci 36:449–457

    Article  CAS  PubMed  Google Scholar 

  • Tang JP, Melethil S (1995) Effect of aging on the kinetics of blood-brain barrier uptake of tryptophan in rats. Pharm Res 7:1085–1091

    Article  Google Scholar 

  • Tosini G, Ye K, Iuvone PM (2012) N-Acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 6:645–653

    Article  Google Scholar 

  • Weber M, Lauterburg T, Tobler I, Burgunder JM (2004) Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358:17–20

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM (2007) Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23:125–130

    Article  CAS  PubMed  Google Scholar 

  • Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK: BMAL1. Proc Natl Acad Sci USA 103:6386–6391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by DBT Grant (BT/PR3974/MED/30/813/2012) and ICMR (Ref. No. BMS/NTF/14/2006–2007), DST Nano (Ref: 8:18) Grant to AJ. UM is thankful to DBT for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jagota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10522_2014_9541_MOESM1_ESM.pdf

Supplementary material 1 (PDF 10 kb). Fig. S1 Effect of rotenone-treatment on body weight in Group 1B (PBS/Sham), Group 1C (Vehicle/V) and Group 1D (rotenone-induced Parkinson’s disease/RIPD rat model). Each value is mean ± SEM (n = 10), p ≤ 0.05 * refers to comparison with vehicle

10522_2014_9541_MOESM2_ESM.pdf

Supplementary material 2 (PDF 251 kb). Fig S2. Tyrosin hydroxylase (TH) and α- Synuclein immunoreactivity in Rat Substantia nigra (SN). A (i and ii) TH immunoblot and densitometry analysis. B (i and ii) α- Synuclein immunoblot and densitometry analysis. Lane 1: Protein molecular weight marker, lane 2 and 3: PBS/Sham, lane 4 and 5: Vehicle/V and lane 6, 7 and 8:Rotenone-induced Parkinson’s disease/RIPD. C. TH-immunoreactivity (TH-ir) in coronal SN brain sections of Group 1C (Vehicle/V) and Group 1D (RIPD). (i) bar = 1 mm (ii) bar = 200 μm SNpC- Substantia nigra pars compacta, SNpR- Substantia nigra pars reticulata. Data were expressed as mean ± SEM. P ≤ 0.05, * - refers to comparison with vehicle. Rotenone-treated rats showed significant decrease in TH-immunoreactivity by about 0.32 fold, p ≤ 0.001 and increase in α-Synuclein- immunoreactivity by about 1.65 fold, p ≤ 0.005, compared to vehicle group

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattam, U., Jagota, A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16, 109–123 (2015). https://doi.org/10.1007/s10522-014-9541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9541-0

Keywords

Navigation