, Volume 16, Issue 1, pp 53–61 | Cite as

Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster

  • Natalia Bgatova
  • Tatiana Dubatolova
  • Leonid Omelyanchuk
  • Ekaterina Plyusnina
  • Mikhail Shaposhnikov
  • Alexey Moskalev
Research Article


The neurodegeneration is one of the features of aging and age-related disorders. Yet, only several antiaging interventions are known to affect the processes of neurodegeneration. Here we show that overexpression of the pro-longevity gene D-GADD45 in Drosophila neurons leads to a postponed manifestation of histological and ultrastructural features of age-dependent neurodegeneration, such as decrease in the packing density of neurons, increasing the degree of neuron cytoplasmic vacuolization, and morphological defects of mitochondrial cristae. Thus, the previously observed (Plyusnina, Biogerontology 12: 211–226, 2011) life extending effect of D-GADD45 overexpression in the nervous system is associated with delayed neurodegeneration.


Gadd45 Neurodegeneration Drosophila model Aging Brain histology Nervous system ultrastructure 



The study was supported by the projects of UrB RAS No. 12-C-4-1019 and SB RAS No. 81, 82, Grant of RFBR N 14-04-01596.

Supplementary material

10522_2014_9533_MOESM1_ESM.rtf (516 kb)
Supplementary material 1 (RTF 515 kb)


  1. Boerrigter ME, Wei JY, Vijg J (1992) DNA repair and Alzheimer’s disease. J Gerontol 47(6):B177–B184PubMedCrossRefGoogle Scholar
  2. Coppede F, Migliore L (2010) DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci 3(1):3–19PubMedCrossRefGoogle Scholar
  3. Cortopassi GA, Shibata D, Soong NW et al (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89(16):7370–7374PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ford D, Hoe N, Landis GN et al (2007) Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp Gerontol 42(6):483–497PubMedCentralPubMedCrossRefGoogle Scholar
  5. Gavrilov LA, Gavrilova NS (1991) The biology of life span: a quantitative approach. Harwood Academic Publishers, Chur––New YorkGoogle Scholar
  6. Gu H, O’Dowd DK (2007) Whole cell recordings from brain of adult Drosophila. J Vis Exp 6:248PubMedGoogle Scholar
  7. Hamilton ML, Van Remmen H, Drake JA et al (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98(18):10469–10474PubMedCentralPubMedCrossRefGoogle Scholar
  8. Holzenberger M (2009) IGF-1 receptors in the brain control longevity in mice. Med Sci (Paris) 25(4):371–376CrossRefGoogle Scholar
  9. Kappeler L, De Magalhaes Filho C, Dupont J et al (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6(10):e254PubMedCentralPubMedCrossRefGoogle Scholar
  10. Kretzschmar D, Hasan G, Sharma S et al (1997) The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci 17(19):7425–7432PubMedGoogle Scholar
  11. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297PubMedCrossRefGoogle Scholar
  12. Miquel J, Economos AC, Bensch KG et al (1979) Review of cell aging in Drosophila and mouse. Age 2(3):78–88CrossRefGoogle Scholar
  13. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15(2):657–664PubMedCentralPubMedCrossRefGoogle Scholar
  14. Moskalev A, Plyusnina E, Shaposhnikov M et al (2012a) The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 11(22):4222–4241PubMedCentralPubMedCrossRefGoogle Scholar
  15. Moskalev AA, Smit-McBride Z, Shaposhnikov MV et al (2012b) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66PubMedCentralPubMedCrossRefGoogle Scholar
  16. Moskalev AA, Shaposhnikov MV, Plyusnina EN et al (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12(2):661–684PubMedCrossRefGoogle Scholar
  17. Plyusnina EN, Shaposhnikov MV, Moskalev AA (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 12(3):211–226PubMedCrossRefGoogle Scholar
  18. Poirier L, Shane A, Zheng J et al (2008) Characterization of the Drosophila gene-switch system in aging studies: a cautionary tale. Aging Cell 7(5):758–770PubMedCrossRefGoogle Scholar
  19. Santiard-Baron D, Gosset P, Nicole A et al (1999) Identification of β-amyloid-responsive genes by RNA differential display: early induction of a DNA damage-inducible gene, gadd45. Exp Neurol 158(1):206–213PubMedCrossRefGoogle Scholar
  20. Santiard-Baron D, Lacoste A, Ellouk-Achard S et al (2001) The amyloid peptide induces early genotoxic damage in human preneuron NT2. Mutat Res 479(1–2):113–120PubMedCrossRefGoogle Scholar
  21. Stokes AH, Freeman WM, Mitchell SG et al (2002) Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology 23(6):675–684PubMedCrossRefGoogle Scholar
  22. Torp R, Su JH, Deng G et al (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Dis 5(4):245–252PubMedCrossRefGoogle Scholar
  23. Warrick JM, Chan HY, Gray-Board GL et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428PubMedCrossRefGoogle Scholar
  24. Zhang G, Li J, Purkayastha S et al (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497(7448):211–216PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Natalia Bgatova
    • 1
  • Tatiana Dubatolova
    • 2
  • Leonid Omelyanchuk
    • 2
  • Ekaterina Plyusnina
    • 3
    • 4
  • Mikhail Shaposhnikov
    • 3
    • 4
  • Alexey Moskalev
    • 3
    • 4
    • 5
  1. 1.Research Institute of Clinical and Experimental Lymphology Siberian Branch of RAMSNovosibirskRussia
  2. 2.Institute of Molecular and Cellular BiologySiberian Branch of RASNovosibirskRussia
  3. 3.Institute of Biology of Komi Science Center of Ural Branch of RASSyktyvkarRussia
  4. 4.Syktyvkar State UniversitySyktyvkarRussia
  5. 5.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations