Skip to main content

Physical activity affects plasma coenzyme Q10 levels differently in young and old humans

Abstract

Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Barroso MP, Gómez-Díaz C, Villalba JM, Burón MI, López-Lluch G, Navas P (1997) Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. J Bioenerg Biomembr 29(3):259–267

    CAS  PubMed  Article  Google Scholar 

  • Battino M, Amadio E, Oradei A, Littarru GP (1997) Metabolic and antioxidant markers in the plasma of sportsmen from a Mediterranean town performing non-agonistic activity. Mol Aspects Med 18(Suppl):S241–S245

    PubMed  Article  Google Scholar 

  • Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q—biosynthesis and functions. Biochem Biophys Res Commun 396(1):74–79

    CAS  PubMed  Article  Google Scholar 

  • Braun B, Clarkson PM, Freedson PS, Kohl RL (1991) Effects of coenzyme Q10 supplementation on exercise performance, VO2max, and lipid peroxidation in trained cyclists. Int J Sport Nutr 1(4):353–365

    CAS  PubMed  Google Scholar 

  • Bruge F, Bacchetti T, Principi F, Scarpa ES, Littarru GP, Tiano L (2012) Olive oil supplemented with coenzyme Q(10): effect on plasma and lipoprotein oxidative status. Biofactors 38(3):249–256

    CAS  PubMed  Article  Google Scholar 

  • Buhmann C, Arlt S, Kontush A, Moller-Bertram T, Sperber S, Oechsner M, Stuerenburg HJ, Beisiegel U (2004) Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by antiparkinsonian medication. Neurobiol Dis 15(1):160–170

    CAS  PubMed  Article  Google Scholar 

  • Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K (2008) Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc 40(7):1263–1270

    CAS  PubMed  Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum Publishers, Hillsdale, NJ

    Google Scholar 

  • Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35(8):1381–1395

    PubMed  Article  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25(1):220–221

    CAS  PubMed  Article  Google Scholar 

  • Crane FL, Sun IL, Sun EE (1993) The essential functions of coenzyme Q. Clin Investig 71(8 Suppl):S55–S59

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Puhl H, Dieber-Rotheneder M, Waeg G, Rabl H (1991) Effect of antioxidants on oxidative modification of LDL. Ann Med 23(5):573–581

    CAS  PubMed  Article  Google Scholar 

  • Fernández-Ayala DJ, Martin SF, Barroso MP, Gómez-Díaz C, Villalba JM, Rodríguez-Aguilera JC, López-Lluch G, Navas P (2000) Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal 2(2):263–275

    PubMed  Article  Google Scholar 

  • Fernández-Ayala DJ, López-Lluch G, García-Valdés M, Arroyo A, Navas P (2005) Specificity of coenzyme Q(10) for a balanced function of respiratory chain and endogenous ubiquinone biosynthesis in human cells. Biochim Biophys Acta 1706(1–2):174–183

    PubMed  Article  Google Scholar 

  • Fleg JL (2012) Aerobic exercise in the elderly: a key to successful aging. Discov Med 13(70):223–228

    PubMed  Google Scholar 

  • Frei B, Kim MC, Ames BN (1990a) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 87(12):4879–4883

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Frei B, Stocker R, England L, Ames BN (1990b) Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol 264:155–163

    CAS  PubMed  Article  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    Google Scholar 

  • Golbidi S, Laher I (2012) Exercise and the cardiovascular system. Cardiol Res Pract 2012:210852

    PubMed Central  PubMed  Google Scholar 

  • Gómez-Díaz C, Rodríguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, Crane FL, Navas P (1997) Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 29(3):251–257

    PubMed  Article  Google Scholar 

  • Gutierrez-Mariscal FM, Pérez-Martínez P, Delgado-Lista J, Yubero-Serrano EM, Camargo A, Delgado-Casado N, Cruz-Teno C, Santos-González M, Rodríguez-Cantalejo F, Castaño JP, Villalba-Montoro JM, Fuentes F, Pérez-Jiménez F, López-Miranda J (2012) Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordr) 34(2):389–403

    CAS  Article  Google Scholar 

  • Hernandez-Ojeda J, Cardona-Munoz EG, Roman-Pintos LM, Troyo-Sanroman R, Ortiz-Lazareno PC, Cardenas-Meza MA, Pascoe-González S, Miranda-Díaz AG (2012) The effect of ubiquinone in diabetic polyneuropathy: a randomized double-blind placebo-controlled study. J Diabetes Complicat 26(4):352–358

    PubMed  Article  Google Scholar 

  • Hyun DH, Hernandez JO, Mattson MP, de Cabo R (2006) The plasma membrane redox system in aging. Ageing Res Rev 5(2):209–220

    CAS  PubMed  Article  Google Scholar 

  • Johansen K, Theorell H, Karlsson J, Diamant B, Folkers K (1991) Coenzyme Q10, alpha-tocopherol and free cholesterol in HDL and LDL fractions. Ann Med 23(6):649–656

    CAS  PubMed  Article  Google Scholar 

  • Kagan V, Quinn P (2001) Coenzyme Q: molecular mechanisms in health and disease. CRC Press, Boca Ratón, Florida

    Google Scholar 

  • Karlsson J, Diamant B, Edlund PO, Lund B, Folkers K, Theorell H (1992) Plasma ubiquinone, alpha-tocopherol and cholesterol in man. Int J Vitam Nutr Res 62(2):160–164

    CAS  PubMed  Google Scholar 

  • Kontush A, Schippling S, Spranger T, Beisiegel U (1999) Plasma ubiquinol-10 as a marker for disease: is the assay worthwhile? Biofactors 9(2–4):225–229

    CAS  PubMed  Article  Google Scholar 

  • Lass A, Kwong L, Sohal RS (1999) Mitochondrial coenzyme Q content and aging. Biofactors 9(2–4):199–205

    CAS  PubMed  Article  Google Scholar 

  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernández-Salguero PM, Westphal H, González FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15(6):3012–3022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    CAS  PubMed  Article  Google Scholar 

  • López-Lluch G, Barroso MP, Martin SF, Fernández-Ayala DJ, Gómez-Díaz C, Villalba JM, Navas P (1999) Role of plasma membrane coenzyme Q on the regulation of apoptosis. Biofactors 9(2–4):171–177

    PubMed  Article  Google Scholar 

  • López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocana C, Navas P (2010) Is coenzyme Q a key factor in aging? Mech Ageing Dev 131(4):225–235

    PubMed  Article  Google Scholar 

  • Mancini A, Corbo GM, Gaballo A, Valente S, Gigliotti P, Cimino V, De Marinis L, Principi F, Littarru GP (2005) Relationships between plasma CoQ10 levels and thyroid hormones in chronic obstructive pulmonary disease. Biofactors 25(1–4):201–204

    CAS  PubMed  Article  Google Scholar 

  • Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 7(Suppl):S34–S40

    CAS  PubMed  Article  Google Scholar 

  • Oh KS, Kim M, Lee J, Kim MJ, Nam YS, Ham JE, Shin SS, Lee CM, Yoon M (2006) Liver PPARalpha and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice. Biochem Biophys Res Commun 345(3):1232–1239

    CAS  PubMed  Article  Google Scholar 

  • Passi S, De Pita O, Puddu P, Littarru GP (2002) Lipophilic antioxidants in human sebum and aging. Free Radic Res 36(4):471–477

    CAS  PubMed  Article  Google Scholar 

  • Pedersen HS, Mortensen SA, Rohde M, Deguchi Y, Mulvad G, Bjerregaard P, Hansen JC (1999) High serum coenzyme Q10, positively correlated with age, selenium and cholesterol, in Inuit of Greenland. A pilot study. Biofactors 9(2–4):319–323

    CAS  PubMed  Article  Google Scholar 

  • Peel NM, McClure RJ, Bartlett HP (2005) Behavioral determinants of healthy aging. Am J Prev Med 28(3):298–304

    PubMed  Article  Google Scholar 

  • Ravaglia G, Forti P, Maioli F, Scali RC, Boschi F, Cicognani A, Morini P, Bargossi A, Gasbarrini G (1996) Coenzyme Q10 plasma levels and body composition in elderly males. Arch Gerontol Geriatr 22(Suppl 1):539–543

    PubMed  Article  Google Scholar 

  • Rikli J (2001) Senior fitness test manual. Human Kinetics, Champaign, IL

    Google Scholar 

  • Robinson CE, Keshavarzian A, Pasco DS, Frommel TO, Winship DH, Holmes EW (1999) Determination of protein carbonyl groups by immunoblotting. Anal Biochem 266(1):48–57

    CAS  PubMed  Article  Google Scholar 

  • Rodríguez-Bies E, Santa-Cruz Calvo S, Fontan-Lozano A, Pena Amaro J, Berral de la Rosa FJ, Carrion AM, Navas P, López-Lluch G (2010) Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance. PLoS ONE 5(11):e13900

    PubMed Central  PubMed  Article  Google Scholar 

  • Schmelzer C, Kubo H, Mori M, Sawashita J, Kitano M, Hosoe K, Boomgaarden I, Doring F, Higuchi K (2010) Supplementation with the reduced form of coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice. Mol Nutr Food Res 54(6):805–815

    CAS  PubMed  Article  Google Scholar 

  • Soderberg M, Edlund C, Kristensson K, Dallner G (1990) Lipid compositions of different regions of the human brain during aging. J Neurochem 54(2):415–423

    CAS  PubMed  Article  Google Scholar 

  • Sohmiya M, Tanaka M, Tak NW, Yanagisawa M, Tanino Y, Suzuki Y, Okamoto K, Yamamoto Y (2004) Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 223(2):161–166

    CAS  PubMed  Article  Google Scholar 

  • Stewart KJ (2005) Physical activity and aging. Ann NY Acad Sci 1055:193–206

    PubMed  Article  Google Scholar 

  • Stocker R, Bowry VW, Frei B (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci USA 88(5):1646–1650

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Thomas S, Reading J, Shephard RJ (1992) Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci 17(4):338–345

    CAS  PubMed  Google Scholar 

  • Thomas AW, Davies NA, Moir H, Watkeys L, Ruffino JS, Isa SA, Butcher LR, Hughes MG, Morris K, Webb R (2012) Exercise-associated generation of PPARgamma ligands activates PPARgamma signaling events and upregulates genes related to lipid metabolism. J Appl Physiol 112(5):806–815

    CAS  PubMed  Article  Google Scholar 

  • Tiano L, Padella L, Santoro L, Carnevali P, Principi F, Bruge F, Gabrielli O, Littarru GP (2012) Prolonged coenzyme Q10 treatment in down syndrome patients: effect on DNA oxidation. Neurobiol Aging 33(3):626.e1–8

    Google Scholar 

  • Tsai KL, Chen LH, Chiou SH, Chiou GY, Chen YC, Chou HY, Chen LK, Chen HY, Chiu TH, Tsai CS, Ou HC, Kao CL (2011) Coenzyme Q10 suppresses oxLDL-induced endothelial oxidative injuries by the modulation of LOX-1-mediated ROS generation via the AMPK/PKC/NADPH oxidase signaling pathway. Mol Nutr Food Res 55(Suppl 2):S227–S240

    CAS  PubMed  Article  Google Scholar 

  • Turunen M, Dallner G (1998) Elevation of ubiquinone content by peroxisomal inducers in rat liver during aging. Chem Biol Interact 116(1–2):79–91

    CAS  PubMed  Article  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660(1–2):171–199

    CAS  PubMed  Article  Google Scholar 

  • Villalba JM, Parrado C, Santos-González M, Alcain FJ (2010) Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 19(4):535–554

    CAS  PubMed  Article  Google Scholar 

  • Wada H, Goto H, Hagiwara S, Yamamoto Y (2007) Redox status of coenzyme Q10 is associated with chronological age. J Am Geriatr Soc 55(7):1141–1142

    PubMed  Article  Google Scholar 

  • Witting PK, Pettersson K, Letters J, Stocker R (2000) Anti-atherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice. Free Radic Biol Med 29(3–4):295–305

    CAS  PubMed  Article  Google Scholar 

  • Yang X, Dai G, Li G, Yang ES (2010) Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 41(1):110–113

    CAS  PubMed  Article  Google Scholar 

  • Yubero-Serrano EM, Delgado-Casado N, Delgado-Lista J, Pérez-Martínez P, Tasset-Cuevas I, Santos-González M, Caballero J, García-Rios A, Marin C, Gutierrez-Mariscal FM, Fuentes F, Villalba JM, Tunez I, Pérez-Jiménez F, López-Miranda J (2011) Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women. Age (Dord) 33(4):579–590

    CAS  Article  Google Scholar 

  • Yubero-Serrano EM, González-Guardia L, Rangel-Zuniga O, Delgado-Lista J, Gutierrez-Mariscal FM, Pérez-Martínez P, Delgado-Casado N, Cruz-Teno C, Tinahones FJ, Villalba JM, Pérez-Jiménez F, López-Miranda J (2012) Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J Gerontol A Biol Sci Med Sci 67(1):3–10

    PubMed  Article  Google Scholar 

  • Zhang Y, Appelkvist EL, Kristensson K, Dallner G (1996) The lipid compositions of different regions of rat brain during development and aging. Neurobiol Aging 17(6):869–875

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We want to thank the participants for their patience, devotion and participation. This study has been supported by funds from the Andalusian Government as the BIO177 group through FEDER funds (European Commission). The Centro Andaluz de Biología del Desarrollo and the Universidad Pablo de Olavide provided human and infrastructure resources. Jesús del Pozo-Cruz was awarded a pre-doctoral fellowship and the study were funded by the project IMD2010-SC002 from the Centro Andaluz de Medicina del Deporte on behalf of the Government of Andalusia. Tung Bui Thanh received a fellowship from the AECID program (Spanish Ministry of Foreing Affair). ERB, MBS, PN and GLL are also members of the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo López-Lluch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Del Pozo-Cruz, J., Rodríguez-Bies, E., Ballesteros-Simarro, M. et al. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 15, 199–211 (2014). https://doi.org/10.1007/s10522-013-9491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9491-y

Keywords

  • Coenzyme Q
  • Blood
  • Plasma
  • Cholesterol
  • Exercise
  • Physical activity
  • Aging