, Volume 14, Issue 6, pp 641–649 | Cite as

Alzheimer’s as a metabolic disease

  • Lloyd A. DemetriusEmail author
  • Jane Driver
Review Article


Empirical evidence indicates that impaired mitochondrial energy metabolism is the defining characteristic of almost all cases of Alzheimer’s disease (AD). Evidence is reviewed supporting the general hypothesis that the up-regulation of OxPhos activity, a metabolic response to mitochondrial dysregulation, drives the cascade of events leading to AD. This mode of metabolic alteration, called the Inverse Warburg effect, is postulated as an essential compensatory mechanism of energy production to maintain the viability of impaired neuronal cells. This article appeals to the inverse comorbidity of cancer and AD to show that the amyloid hypothesis, a genetic and neuron-centric model of the origin of sporadic forms of AD, is not consistent with epidemiological data concerning the age-incidence rates of AD. A view of Alzheimer’s as a metabolic disease—a condition consistent with mitochondrial dysregulation and the Inverse Warburg effect, will entail a radically new approach to diagnostic and therapeutic strategies.


Inverse Warburg effect Amyloid cascade hypothesis Oxidative phosphorylation Glycolysis Aging 



Support from the Max Planck Institute for Molecular Genetics, Berlin, Germany, is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Cornwell GG, Westermark P (1980) Senile amyloidosis: a protean manifestation of the aging process. J Clin Pathol 33(12):1146–1152Google Scholar
  2. Demetrius LA (2004) Caloric restriction, metabolic rate, and entropy. J Gerontol 59(9):B902–B915CrossRefGoogle Scholar
  3. Demetrius LA, Simon DK (2012) An Inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology 13(6):583–594PubMedCrossRefGoogle Scholar
  4. Demetrius LA, Simon DK (2013) The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface, 10(82):20130006PubMedCrossRefGoogle Scholar
  5. Driver JA, Beiser A, Rhoda A, Kreger BE, Splansky GL, Kurth T, Kiel DP, Lu KP, Seshadri S, Wolf PA (2012) Inverse association between cancer and Alzheimers disease: results from the Framingham Heart Study. BMJ, 344:e1442CrossRefGoogle Scholar
  6. Fratiglioni L, De Ronchi D, Agüero-Torres H (1999) Worldwide prevalence and incidence of dementia. Drugs Aging 15(5):365–75PubMedCrossRefGoogle Scholar
  7. Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110:1129–1134PubMedCrossRefGoogle Scholar
  8. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  9. Hendrie HC (1998) Epidemiology of dementia and Alzheimer’s disease. Am J Geriatr Psychiatr 6:S3–18CrossRefGoogle Scholar
  10. Kruman H (2004) Why do neurons enter the cell cycle? Cell Cycle 3(6):769–73PubMedCrossRefGoogle Scholar
  11. Nagy Z, Esiri MM, Cato AM, Smith AD (1997) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol 94(1):6–15PubMedCrossRefGoogle Scholar
  12. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–67PubMedGoogle Scholar
  13. Palmer AM (2011) Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharm Sci 32(3):141–147PubMedCrossRefGoogle Scholar
  14. Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62Google Scholar
  15. Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268PubMedCrossRefGoogle Scholar
  16. Plun-Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW (2010) Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet 6(12):e1001257CrossRefGoogle Scholar
  17. Reddy PH (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice. Hum Mol Genet 13(12):1225–1240PubMedCrossRefGoogle Scholar
  18. Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI, Morris JC (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74(2):106–112PubMedCrossRefGoogle Scholar
  19. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498PubMedCrossRefGoogle Scholar
  20. Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–5PubMedCrossRefGoogle Scholar
  21. Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nut Metabol 7(7):7CrossRefGoogle Scholar
  22. Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18(6):598–608PubMedCrossRefGoogle Scholar
  23. Swerdlow RH (2007) Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging?. Neurobiol Aging 28(10):1465–1480PubMedCrossRefGoogle Scholar
  24. Tabarés-Seisdedos R, Rubenstein JL (2013) Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14(4):293–304PubMedCrossRefGoogle Scholar
  25. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med, 2(10). doi: 10.1101/csh2012
  26. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–33PubMedCrossRefGoogle Scholar
  27. Warburg O (1931) The metabolism of tumors. Academic Press, New York, RR SmithGoogle Scholar
  28. Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochem Biophys Acta 1772(4):494–502PubMedCrossRefGoogle Scholar
  29. Zhu X, Perry G, Moreira PI, Aliev G, Cash AD, Hirai K, Smith MA (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer’s disease. J Alzheimer’s Dis 9:147–153Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Geriatric Research Education and Clinical CenterVA Boston Medical CenterBostonUSA

Personalised recommendations