, Volume 14, Issue 5, pp 557–567 | Cite as

Hair trace elementary profiles in aging rodents and primates: links to altered cell homeodynamics and disease

  • Mirela Ambeskovic
  • Eberhard Fuchs
  • Pierre Beaumier
  • Michael Gerken
  • Gerlinde A. MetzEmail author
Research Article


Aging is associated with an increased incidence of pathological conditions such as neurodegeneration, cardiovascular and renal disease, and cancer. These conditions are believed to be linked to a disruption in cell homeodynamics, which is regulated by essential trace elements. In this study we used hair elementary analysis by inductively coupled plasma mass spectrometry (ICPMS) to examine age-related profiles of 47 elements in both rats and common marmoset monkeys. Hair was collected from young adult (6 months) and aged (18 months) Long–Evans male rats, and young adult (2 years), middle-aged (4 years) and aged (>8 years) marmosets. The results revealed that aging reduces content levels of cobalt, potassium and selenium while content levels of aluminium, arsenic, boron, mercury, molybdenum, and titanium were elevated in aged rats. Similarly, aged marmosets showed reduced levels of cobalt and elevated levels of aluminium. Case studies in aged rats revealed that myocardial infarction was associated with elevated levels of sodium, potassium and cadmium and reduced zinc, while renal failure was linked to elevated content of potassium, chloride and boron and reduced contents of manganese. Carcinoma was linked to elevated arsenic and reduced selenium levels. These findings indicate that hair elementary profiles in healthy aging and age-related diseases reflect altered cell and organ metabolic functions. Cobalt and aluminium in particular may serve as biomarkers of aging in animal models. Thus, elementary deposition in hair may have predictive and diagnostic value in age-related pathological conditions, including cardiovascular and kidney disease and cancer.


Aging Age-related diseases Metabolism Trace minerals Homeodynamics Neurodegeneration Renal failure Myocardial infarction Carcinoma Marmosets Rats 



The authors thank Cornelia Heckmann for assistance with the experiments. The authors acknowledge support by the Alberta Innovates-Health Solutions Interdisciplinary Team Grant No. 200700595 “Preterm Birth and Healthy Outcomes”, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institutes of Health Research No. 102652 (GAM). GAM is an AI-HS Alberta Heritage Medical Senior Scholar.


  1. Afridi HI, Kazi TG, Brabazon D, Naher S, Tulpur FN (2013) Comparative metal distribution in scalp of Pakistani and Irish referents and diabetes mellitus patients. Clin Chim Acta 415:207–214. doi: 10.1016.j.cca.2012.10.029 PubMedCrossRefGoogle Scholar
  2. Andres E, Vidal-Alaball J, Federici L, Loukili NH, Zimmer J, Kaltenbach G (2007) Clinical aspects of cobalamin deficiency in elderly patients. Epidemiology, causes, clinical manifestations, and treatments with special focus on oral cobalamin therapy. Eur J Intern Med 18:456–462. doi: 10.1016/j.ejim.2007.02.013 PubMedCrossRefGoogle Scholar
  3. Becker DA, Balcer LJ, Galleta SL (2012) The neurological complications of nutritional deficiency following bariatric surgery. J Obes 10:1–8. doi: 10.1155/2012/608534 CrossRefGoogle Scholar
  4. Brown AC, Crounse RG (1980) Hair, trace elements, and human illness. Praeger Publishers, New YorkGoogle Scholar
  5. Calabrese EJ (2004) Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep 5(Suppl 1):37–40. doi: 10.1038/sj.embor.7400222 CrossRefGoogle Scholar
  6. Cass WA, Grondin R, Anderson AH, Zhang Z, Hardy PA, Hussey-Andersen LK, Rayens WS, Gerhardt GA, Gash DM (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28(2):258–271. doi: 10.1016/j.neurobiolaging.2005.12.010 PubMedCrossRefGoogle Scholar
  7. Cowgill UM (1983) The distribution of selenium and cancer mortality in the continental United States. Biol Trace Elem Res 5(4–5):345–361. doi: 10.1007/BF02987219 CrossRefGoogle Scholar
  8. Davies S, Howard JM, Hunnisett A, Howard M (1997) Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients—implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism 46(5):469–473. doi: 10.1016/S0026-0495(97)90179-7 PubMedCrossRefGoogle Scholar
  9. Domingo JL (2006) Aluminium and other metals in Alzheimer’s disease: a review of potential therapy with chelates agents. J Alzheimers Dis 10(2–3):331–341PubMedGoogle Scholar
  10. Ebling FJ (1976) Hair. J Invest Dermatol 67:98–105. doi: 10.1111/1523-1747.ep12512509 PubMedCrossRefGoogle Scholar
  11. Eck PC, Wilson L (1989) Toxic metals in human health and disease. Eck Institute of Applied Nutrition and Bioenergetics Ltd, Phoenix, AZGoogle Scholar
  12. Farina M, Avila DS, Teixeira da Rocha BJ, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62(5):550–594. doi: 10.1016/j.neuint.2012.12.006 CrossRefGoogle Scholar
  13. Gilmer CM, Alwin DF (2004) Heath, illness and optimal aging: biological and psychosocial prospective. Springer, New YorkGoogle Scholar
  14. Gordon GF (1985) Sex and age related differences in trace element concentrations in hair. Sci Total Environ 42(1–2):133–147. doi: 10.1016/0048-9697(85)90013-0 PubMedCrossRefGoogle Scholar
  15. Kawahara M (2005) Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 8:171–183PubMedGoogle Scholar
  16. Kawahara M, Kato M, Kuroda Y (2001) Effects of aluminum on the neurotoxicity on primary cultured neurons and on the aggregation of beta-amyloid protein. Brain Res Bull 55(2):211–217. doi: 10.1016/S0361.9230(01)00475-0 PubMedCrossRefGoogle Scholar
  17. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122(1):1–18. doi: 10.1007/s12011-007-8062 PubMedCrossRefGoogle Scholar
  18. Lavker RM, Miller S, Wilson C, Cotsarelis G, Wei ZG, Yang JS (1993) Hair follicle stem cells: their location, role in hair cycle, and involvement in skin tumor formation. J Invest Dermatol 101:16–26. doi: 10.1111/1523-1747.ep12362556 CrossRefGoogle Scholar
  19. Lind PM, Olsen L, Lind L (2012) Circulating levels of metals are related to carotid atherosclerosis in elderly. Sci Total Environ 416:80–88. doi: 10.1016/j.scitotenv.2011.11.064 PubMedCrossRefGoogle Scholar
  20. Lindenbaum J, Halton EB, Savage DG, Brust JC, Garret TJ, Podell ER, Marcell PD, Stabler SP, Allen RH (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318(26):1720–1728. doi: 10.1056/NEJM198806303182604 PubMedCrossRefGoogle Scholar
  21. Lv J, Wang W, Kraffit T, Li Y, Zhang F, Yuan F (2011) Effects of several environmental factors on longevity and health of the human population of Zhongxiang, Hubei, China. Biol Trace Elem Res 143(2):702–716. doi: 10.1007/s12011-010-8914-8 PubMedCrossRefGoogle Scholar
  22. Maestripieri D, Hoffman CL (2011) Chronic stress, allostatic load, and aging in nonhuman primates. Dev Psychopathol 236(4):1187–1195. doi: 10.1017/S0954579411000551 CrossRefGoogle Scholar
  23. Merrett DL, Kirkland SW, Metz GA (2010) Synergistic effects of age and stress in a rodent model of stroke. Behav Brain Res 214(1):55–59. doi: 10.1016/j.bbr.2010.04.035 PubMedCrossRefGoogle Scholar
  24. Metzler MJ, Saucier DM, Metz GA (2013) Enriched childhood experiences moderate age-related motor and cognitive decline. Front Behav Neurosci 7(1):1–8. doi: 10.3389/fnbeh.2013.00001 PubMedGoogle Scholar
  25. Mezzetti A, Pierdomenico SD, Costantini F, Romano F, De Cesare D, Cuccurullo F, Imbastaro T, Riario-Sforza G, Di Giacomo F, Zuliani G, Felinn R (1998) Cooper/zinc ratio and systemic oxidant load: effect of aging and aging-related degenerative diseases. Free Radic Biol Med 25(6):676–681. doi: 10.1016/S0891-5849(98)00109-9 PubMedCrossRefGoogle Scholar
  26. Mordukhovich I, Wright RO, Hu H, Amarasiriwardena C, Baccarelli A, Litonjua A, Sparrow D, Vokonas P, Schwartz J (2012) Association of toenail arsenic, cadmium, mercury, manganese, and lead with blood pressure in the normative aging study. Environ Health Perspect 120(1):98–104. doi: 10.1289/eph.1002805 PubMedCrossRefGoogle Scholar
  27. Nakagawa N (1998) Studies on changes in trace elements of the brain related to aging. Hokkaido Igaku Zasshi 73(2):1881–1990Google Scholar
  28. Nielsen FH, Penland JG (2006) Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source. Nutr Neurosci 9(1–2):105–112. doi: 10.1080/10284/50600772189 PubMedCrossRefGoogle Scholar
  29. Rahil-Khazen R, Bolann BJ, Myking A, Ulvik RJ (2002) Multi-element analysis of trace element levels in human autopsy tissue by using inductively coupled atomic emission spectrometry technique (ICP-AES). J Trace Elem Med Biol 16(1):15–25. doi: 10.1016/S0946-672X(02)80004-9 PubMedCrossRefGoogle Scholar
  30. Rattan SIS (2013) Healthy ageing, but what is health? Biogerontology. doi: 10.1007/s10522-013-9442-7
  31. Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145(1):1–18. doi: 10.1016/S0378-4274(03)00262-5 PubMedCrossRefGoogle Scholar
  32. Schlander LE, Bailey JL, Sands JM (2010) Electrolytes in the aging. Adv Chronic Kidney Dis 17(4):308–319. doi: 10.1053/j.ackd.2010.03.008 CrossRefGoogle Scholar
  33. Schroeder HJ (1967) Cadmium, chromium and cardiovascular disease. Circulation 35(3):570–582. doi: 10.1161/01.CIR.35.3.570 PubMedCrossRefGoogle Scholar
  34. Serpa RFB, de Jesus EFO, Anjos MJ, do Carmo MGT, Moreira S, Rocha MS, Martinez AMB, Lopes RT (2006) Elemental concentration analysis in brain structures from young, adult and old Wistar rats by total reflection X-ray fluorescence with synchrotron radiation. Spectrochim Acta Part B 61:1205–1209. doi: 10.1016/j.sab.2006.06.009 CrossRefGoogle Scholar
  35. Shcherbatykh I, Carpetner DO (2007) The role of metals in the etiology of Alzheimer’s disease. J Alzheimers Dis 11(2):191–205PubMedGoogle Scholar
  36. Shimamura T, Iijima S, Hirayama M, Iwashita M, Akiyama S, Tekaku Y, Yumoto S (2013a) The concentration of major and trace elements in rat kidney: aging effects and mutual relationship. J Trace Med Biol 27(2):12–20. doi: 10.1016/j.jtemb.2012.05.005 CrossRefGoogle Scholar
  37. Shimamura T, Iijima S, Hirayama M, Iwashita M, Akiyama S, Tekaku Y, Yumoto S (2013) Age-related effects of major and trace element concentrations in rat liver and their mutual relationship. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2013.04.006
  38. Strawbridge WJ, Wallhagen MI, Cohen RD (2002) Successful aging and well-being: self-rated compared with Rowe and Cahn. Gerontologist 42(6):727–733. doi: 10.1093/geront/42.6.727 PubMedCrossRefGoogle Scholar
  39. Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2001) Age-related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res 80:145–157. doi: 10.1385/BTER:80:2:145 PubMedCrossRefGoogle Scholar
  40. Walton JR (2013) Aluminium involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35(1):7–43. doi: 10.3233/JAD-121909 PubMedGoogle Scholar
  41. Wilson LD (2010) Nutritional balance and hair mineral analysis. Prescott, AZGoogle Scholar
  42. Wright RO, Amarsiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216. doi: 10.1016/j.neuro.2005.10.001 PubMedCrossRefGoogle Scholar
  43. Youker K, Rudloff L, Orrego C, Kottner-Assad C, Torre-Amione G (2007) High myocardial tissue copper levels in human heart failure. J Cardiac Failure 13(6):6–8. doi: 10.1016/j.cardfail.2007.06.380 Google Scholar
  44. Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Aluminum (III) as a premotor of cellular oxidation. Coord Chemistry Rev 228(2):271–284. doi: 10.1016/S0010-8545(02)00074-7 CrossRefGoogle Scholar
  45. Zatta P, Drago D, Bolongin S, Sensi SL (2009) Alzheimer’s disease, metal ions, and metal homeostatic therapy. Trends Pharmacol Sci 30(3):346–355. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  46. Zucchi FC, Yao Y, Metz GA (2012) The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 3(96):1–12. doi: 10.3389/fgene.2012.00096 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mirela Ambeskovic
    • 1
  • Eberhard Fuchs
    • 2
    • 3
  • Pierre Beaumier
    • 4
  • Michael Gerken
    • 5
  • Gerlinde A. Metz
    • 1
    Email author
  1. 1.Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeCanada
  2. 2.German Primate Center, Leibniz-Institute for Primate ResearchGöttingenGermany
  3. 3.Department of NeurologyUniversity of GöttingenGöttingenGermany
  4. 4.CanAlt Health LaboratoriesConcordCanada
  5. 5.Department of Chemistry and BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations