Skip to main content

Advertisement

Log in

Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression

  • Research article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Astrocytes are fundamental for brain physiology and pathology, including Alzheimer’s disease (AD). Among their functions, the maintenance of glutamate balance via the glutamate–glutamine (Glu–Gln) shuttle is critical for both normal cognitive functions and excitotoxicity relevant for AD progression. Astroglial glutamine synthetase (GS), converting glutamate to glutamine, is a key element in the Glu–Gln cycle. The entorhinal cortex (EC) is the brain area earliest affected in human AD. We have recently reported an early astrocytic atrophy in the EC in triple transgenic animal model of AD (3×Tg-AD). Here, we studied and analysed whether the changes in astrocytic morphology coincides with alterations of the Glu–Gln cycle by determining astrocytic GS. We found that the numerical density of GS-immunoreactive (GS-IR) cells as well as GS content (measured by optical density, OD) remained constant between 1 and 12 months of age, independent of the presence of senile plaques. Dual labelling images revealed GS-IR, GFAP-IR, GS/GFAP-IR subsets of astroglia. Despite the evident decrease in GFAP-IR surface and volume, the surface and volume of GS-IR and GS/GFAP-IR cells remained unchanged. Therefore, reduced GFAP presence obvious in the progression of AD from early stages does not impair upon glutamate homeostasis in the EC of 3×Tg-AD mice. Our data also indicate distinct functional populations of astrocytes, which may undergo specific remodelling during AD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arsenault D, Julien C, Tremblay C, Calon F (2011) DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3 × Tg-AD mice. PLoS ONE 6:e17397

    Article  PubMed  CAS  Google Scholar 

  • Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239:28–37

    Article  PubMed  CAS  Google Scholar 

  • Beckstrom H, Julsrud L, Haugeto O, Dewar D, Graham DI, Lehre KP, Storm-Mathisen J, Danbolt NC (1999) Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer’s disease. J Neurosci Res 55:218–229

    Article  PubMed  CAS  Google Scholar 

  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bouras C, Hof PR, Giannakopoulos P, Michael JP, Morrison JH (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  PubMed  CAS  Google Scholar 

  • Braak E, Griffing K, Griffing K, Arai K, Bratzke H, Braak H (1991) Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):14–22

    Google Scholar 

  • Chvatal A, Anderova M, Hock M, Prajerova I, Neprasova H, Chvatal V, Kirchhoff F, Sykova E (2007) Three-dimensional confocal morphometry reveals structural changes in astrocyte morphology in situ. J Neurosci Res 853:260–271

    Article  Google Scholar 

  • Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996–24006

    Article  PubMed  CAS  Google Scholar 

  • Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2:175–186

    Article  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  CAS  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  PubMed  CAS  Google Scholar 

  • Hill SJ, Barbarese E, McIntosh TK (1996) Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J Neuropathol Exp Neurol 55:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114–123

    Article  PubMed  CAS  Google Scholar 

  • Kerr KM, Agster KL, Furtak SC, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17:697–708

    Article  PubMed  Google Scholar 

  • Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ (2012) Astrocytic cytoskeleton atrophy in the medial prefrontal cortex of the triple transgenic mouse model of Alzheimer′s disease. J Ana 221:252–262

    Article  Google Scholar 

  • Kulijewicz-Nawrot M, Verkhratsky A, Sykova E, Rodríguez JJ (2013) Glutamine synthetase decrease but not GLT-1 glutamate transporter in the prefrontal cortex astroglia of triple transgenic mice model of Alzheimer’s disease. ASN Neuro (in press)

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv 460:525–542

    Article  PubMed  CAS  Google Scholar 

  • Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M (2001) Intermediatefilaments regulate astrocyte motility. J Neurochem 79:617–625

    Article  PubMed  CAS  Google Scholar 

  • McGaughy J, Koene RA, Eichenbaum H, Hasselmo ME (2005) Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. J Neurosci 25:10273–10281

    Article  PubMed  CAS  Google Scholar 

  • Mishima T, Hirase H (2010) In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous. J Neurosci 30:3093–3100

    Article  PubMed  CAS  Google Scholar 

  • Miyake T, Kitamura T (1992) Glutamine synthetase immunoreactivity in two types of mouse brain glial cells. Brain Res 586:53–60

    Article  PubMed  CAS  Google Scholar 

  • Mohanakrishnan P, Fowler AH, Vonsattel JP, Husain MM, Jolles PR, Liem P, Komoroski RA (1995) An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 102:503–510

    Article  PubMed  CAS  Google Scholar 

  • Muramori F, Kobayashi K, Nakamura I (1998) A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer’s disease, normal controls and non-Alzheimer neuropsychiatric diseases. Psychiatr Clin Neurosci 52:593–599

    Article  CAS  Google Scholar 

  • Naber PA, Lopes da Silva FH, Witter MP (2001) Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus 11:99–104

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM (2000) High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 20:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Noristani HN, Olabarria M, Verkhratsky A, Rodríguez JJ (2010) Serotonin fibre sprouting and increase in serotonin transporter immunoreactivity in the CA1 area of hippocampus in a triple transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 32:71–79

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  PubMed  CAS  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58:831–838

    PubMed  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission. Mol Neurodegener 6:55

    Article  PubMed  CAS  Google Scholar 

  • Otani N, Nawashiro H, Fukui S, Ooigawa H, Ohsumi A, Toyooka T, Shima K et al (2006) Enhanced hippocampal neurodegeneration after traumatic or kainate excitotoxicity in GFAP-null mice. J Clin Neurosci 13:934–938

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin K (2004) The mouse Brain in Stereotaxic Coordinates, Compact 2nd Edition. Academic Press, San Diego

    Google Scholar 

  • Pekny M, Levéen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14:1590–1598

    PubMed  CAS  Google Scholar 

  • Porchet R, Probst A, Bouras C, Draberova E, Draber P, Riederer BM (2003) Analysis of glial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics 3:1476–1485

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312

    Article  PubMed  CAS  Google Scholar 

  • Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Murphy ER (2006) Behavioural pharmacology: 40 + years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 27:141–148

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36:471–482

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE 3:e2935

    Article  PubMed  Google Scholar 

  • Rodríguez JJ, Jones VC, Verkhratsky A (2009a) Impaired cell proliferation in the subventricular zone in an Alzheimer’s disease model. NeuroReport 20:907–912

    Article  PubMed  Google Scholar 

  • Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009b) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    Article  PubMed  Google Scholar 

  • Rothestein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  Google Scholar 

  • Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, Gelsthorpe C, Baxter L, Forster G, Matthews FE, Brayne C, Wharton SB (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32:1795–1807

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nojyo Y (1993) Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3:471–480

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodríguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Rodríguez JJ, Papura V (2012) Neurotransmitters and integration in neuronal-astroglial network. Neurochem Res 37:2326–2338

    Article  PubMed  CAS  Google Scholar 

  • Walton HS, Dodd PR (2007) Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int 50:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Wilcock DM, Vitek MP, Colton CA (2009) Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease. Neuroscience 159:1055–1069

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson U, Li L, Pekna M, Berthold C-H, Blom S, Eliasson C, Renner O, Bushong E, Ellisman M, Morgan TE, Pekny M (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24:5016–5021

    Article  PubMed  CAS  Google Scholar 

  • Witter MP, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9:216–228

    PubMed  CAS  Google Scholar 

  • Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ (2011) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3:271–279

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an Alzheimer’s Research Trust Programme Grant [ART/PG2004A/1] to JJR and AV, grants from the Grant Agency of the Czech Republic to JJR ([GACR 309/09/1696], to ES and JJR [GACR 304/11/0184] and to AV [GACR 305/08/1381, GACR 305/08/1384]) and by the Welcome Trust.. Support from the Spanish Government, Plan Nacional de I+D+I 2008-2011 and ISCIII- Subdirección General de Evaluación y Fomento de la Investigación [PI10/02738] co-financed by FEDER to JJR and AV and the Government of the Basque Country [AE-2010-1-28, AEGV10/16, GV-2011111020] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, CY., Verkhratsky, A., Terzieva, S. et al. Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression. Biogerontology 14, 777–787 (2013). https://doi.org/10.1007/s10522-013-9456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9456-1

Keywords

Navigation