Skip to main content
Log in

Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Senescence varies considerably among fishes, and understanding the evolutionary basis for this diversity has become an important area of study. For rapidly senescing species such as Pacific salmon, senescence is a complex process as these fish are initiating anorexia while migrating to natal spawning grounds, and die within days of reproduction. To better understand senescence in Pacific salmon we examined expression patterns for a suite of genes in brain tissue of pre-senescent and senescent sockeye salmon. Interestingly, a significant increase in expression of genes involved in telomere repair and immune activity was observed in senescent salmon. These data provide insight into physiological changes in salmon undergoing senescence and the factors contributing to variation in observed senescence rates among individuals and populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banks WA, Morley JE, Farr SA, Price TO, Ercal N, Vidaurre I, Schally AV (2010) Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc Natl Acad Sci USA 107:22272–22277

    Article  PubMed  CAS  Google Scholar 

  • Bernardes de Jesus B, Blasco MA (2011) Aging by telomere loss can be reversed. Cell Stem Cell 8:3–4

    Article  PubMed  CAS  Google Scholar 

  • Boudinot P, Massin P, Blanco M, Riffault S, Benmansour A (1999) vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA family. J Virol 73:1846–1852

    PubMed  CAS  Google Scholar 

  • Carlson SM, Rich HB, Quinn TP (2004) Reproductive life-span and sources of mortality for alternative male life-history strategies in sockeye salmon, Oncorhynchus nerka. Can J Zool 82:1878–1885

    Article  Google Scholar 

  • Carlson SM, Hilborn R, Hendry AP, Quinn TP (2007) Predation by bears drives senescence in natural populations of salmon. PLoS One. doi:101371/journalpone0001286

    Google Scholar 

  • Dang W, Zhang M, Hu YH, Sun L (2010) Differential regulation of Sciaenops ocellatus viperin expression by intracellular and extracellular bacterial pathogens. Fish Shellfish Immunol 29:264–270

    Article  PubMed  CAS  Google Scholar 

  • DeVeale B, Brummel T, Seroude L (2004) Immunity and aging: the enemy within? Aging Cell 3:195–208

    Article  PubMed  CAS  Google Scholar 

  • Doctor KK, Quinn TP (2009) Potential for adaptation-by-time in sockeye salmon (Oncorhynchus nerka): the interactions of body size and in-stream reproductive life span with date of arrival and breeding location. Can J Zool 87:708–717

    Article  Google Scholar 

  • Evans TG, Hammill E, Kaukinen K, Schulze A, Patterson D, English K, Curtis J, Miller K (2011) Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration. Mol Ecol 20:4472–4489

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1994) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Gende SM, Quinn TP, Willson MF, Heintz R, Scott TM (2004) Magnitude and fate of salmon-derived nutrients and energy in a coastal stream ecosystem. J Freshw Ecol 19:49–160

    Article  Google Scholar 

  • Greider CW (1998) Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 95:90–92

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:66–67

    Article  Google Scholar 

  • Hendry AP, Day T (2005) Population structure attributable to reproductive date: isolation-by-time and adaptation-by-time. Mol Ecol 14:901–916

    Article  PubMed  CAS  Google Scholar 

  • Hendry AP, Berg OK, Quinn TP (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85:499–514

    Article  Google Scholar 

  • Hendry AP, Morbey Y, Berg O, Wenburg J (2003) Adaptive variation in senescence: reproductive life span in a wild salmon population. Proc R Soc B 271:259–266

    Article  Google Scholar 

  • Hsu CY, Chiu YC, Hsu WL, Chan YP (2008) Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 63:1267–1276

    Article  PubMed  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2009) FactoMineR: factor analysis and data mining with R. http://CRANR-projectorg/package=FactoMineR. Accessed 20 Jan 2013

  • Klapper W, Kuhne K, Singh KK, Heidorn K, Parwaresch R, Krupp G (1998) Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 439:143–146

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Wang X, Feng W, Li G, Su F, Zhang S (2012) Differential expression of aging biomarkers at different life stages of the annual fish Nothobranchius guentheri. Biogerontology 13:501–510

    Google Scholar 

  • Maldonado TA, Jones RE, Norris DO (2002) Timing of neurodegeneration and beta-amyloid (A beta) peptide deposition in the brain of aging kokanee salmon. J Neurobiol 53:21–35

    Article  PubMed  CAS  Google Scholar 

  • McGarigal K (2009) BIOSTATS: a collection of R functions written to aid in the statistical analysis of ecological data sets. http://wwwumassedu/landeco/teaching/ecodata/labs/biostatspdf. Accessed 20 Jan 2013

  • Patnaik BK, Mahaparto N, Jena BS (1994) Ageing in fishes. Gerontology 40:113–132

    Article  PubMed  CAS  Google Scholar 

  • Perrin CJ, Irvine JR (1990) A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific salmon. Can Tech Rep Fish Aquat Sci 1733:1–49

    Google Scholar 

  • Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced chinook salmon populations. Evolution 54:1372–1385

    PubMed  CAS  Google Scholar 

  • Quinn TP, Wetzel L, Bishop S, Overberg K, Rogers DE (2001) Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations. Can J Zool 79:1782–1793

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://wwwR-projectorg. Accessed 20 Jan 2013

  • Sarup P, Sørensen P, Loeschcke V (2011) Flies selected for longevity retain a young gene expression profile. Age 33:69–80

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Amagaya A, Ube M, Ono N, Kudo H (2000) Manipulating the timing of a chum salmon (Oncorhynchus keta) run using preserved sperm. N Pac Anadromous Fish Comm Bull 2:353–357

    Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen J (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Washington Alaska Salmon Program for sampling and infrastructure support, and the National Science Foundation and Gordon and Betty Moore Foundation for funding. Additional support was provided by J. Seeb of the International Program for Salmon Ecological Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Storer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storer, C.S., Quinn, T.P. & Roberts, S.B. Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon. Biogerontology 14, 483–490 (2013). https://doi.org/10.1007/s10522-013-9448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9448-1

Keywords

Navigation