, Volume 14, Issue 6, pp 603–608 | Cite as

Stress cycles in stem cells/iPSCs development: implications for tissue repair

Review article


Stem cells have become a major topic, both publicly and scientifically, owing to their potential to cure diseases and repair damaged tissues. Particular attention has been given to the so-called “induced pluripotent stem cells” (iPSCs) in which somatic cells are induced by the expression of transcription factor encoding transgenes—a methodology first established by Takahashi and Yamanaka (Cell 126:663–676, 2006)—to acquire pluripotent state. This methodology has captured researchers’ imagination as a potential procedure to obtain patient-specific therapies while also solving both the problem of transplant rejection and the ethical concerns often raised regarding the use of embryonic stem cells in regenerative medicine. The study of the biology of stem cells/iPSCs, in recent years, has uncovered some fundamental weaknesses that undermine their potential use in transplantation therapies.


Induced pluripotent stem cells Dedifferentiation Stress-induced dedifferentiation Stress cycles Aging Chromatin Transposable elements 



Induced pluripotent stem cells


Embryonic stem cells


Hematopoietic stem cells


Cyclin dependent kinase


Transposable elements


Hematopoietic stem cells


Long-interspersed nuclear element-1


Ultra violet


  1. Abrahan CE, Insua MF, Politi LE, German OL, Rotstein NP (2009) Oxidative stress promotes proliferation and dedifferentiation of retina glial cells in vitro. J Neurosci Res 87:964–977PubMedCrossRefGoogle Scholar
  2. Abramovich A, Muradian KK, Fraifeld VE (2008) Have we reached the point for in vivo rejuvenation? Rejuvenation Res 11:489–492PubMedCrossRefGoogle Scholar
  3. Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538PubMedCrossRefGoogle Scholar
  4. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578PubMedCrossRefGoogle Scholar
  5. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139PubMedCrossRefGoogle Scholar
  6. Belancio VP, Deininger PL, Roy-Engel AM (2009) LINE dancing in the human genome: transposable elements and disease. Genome Med 1:97PubMedCrossRefGoogle Scholar
  7. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277PubMedCrossRefGoogle Scholar
  8. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  9. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131PubMedCrossRefGoogle Scholar
  10. Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 12:435–443PubMedCrossRefGoogle Scholar
  11. Deragon JM, Capy P (2000) Impact of transposable elements on the human genome. Ann Med 32:264–273PubMedGoogle Scholar
  12. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447PubMedCrossRefGoogle Scholar
  13. Farkash EA, Luning Prak ET (2006) DNA damage and L1 retrotransposition. J Biomed Biotechnol 2006:37285PubMedCrossRefGoogle Scholar
  14. Florentin A, Damri M, Grafi G (2013) Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Dev Dyn. doi:10.1002/dvdy.24003 PubMedGoogle Scholar
  15. Fortunel NO, Out HH, Ng HH, Chen J, Mu X, Chevassut T, Li X, Joseph M, Bailey C, Hatzfeld JA, Hatzfeld A, Usta F, Vega VB, Long PM, Libermann TA, Lim B (2003) Comment on “ ‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302:393PubMedCrossRefGoogle Scholar
  16. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16:1569–1577PubMedCrossRefGoogle Scholar
  17. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47PubMedCrossRefGoogle Scholar
  18. Gonzalez F, Boue S, Izpisua Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12:231–242PubMedCrossRefGoogle Scholar
  19. Grafi G (2004) How cells dedifferentiated: a lesson from plants. Dev Biol 268:1–6PubMedCrossRefGoogle Scholar
  20. Grafi G, Avivi Y (2004) Stem cells: a lesson from dedifferentiation. Trends Biotech 22:388–389CrossRefGoogle Scholar
  21. Grafi G, Ofir R, Chalifa-Caspi V, Plaschkes I (2011a) Illuminating hidden features of stem cells. In: Kallos MK (ed) Embryonic stem cells: basic biology to bioengineering. INTECH Open Access Publisher, pp 265–282Google Scholar
  22. Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011b) Plant response to stress meets dedifferentiation. Planta 233:433–438PubMedCrossRefGoogle Scholar
  23. Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. Proc Natl Acad Sci USA 100:8048–8052PubMedCrossRefGoogle Scholar
  24. Halicka HD, Zhao H, Podhorecka M, Traganos F, Darzynkiewicz Z (2009) Cytometric detection of chromatin relaxation, an early reporter of DNA damage response. Cell Cycle 8:2233–2237PubMedCrossRefGoogle Scholar
  25. Han J, Sachdev PS, Sidhu KS (2010) A combined epigenetic and non-genetic approach for reprogramming human somatic cells. PLoS ONE 5:e12297PubMedCrossRefGoogle Scholar
  26. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135PubMedCrossRefGoogle Scholar
  27. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604PubMedCrossRefGoogle Scholar
  28. Kanji S, Pompili VJ, Das H (2011) Plasticity and maintenance of hematopoietic stem cells during development. Recent Pat Biotechnol 5:40–53PubMedCrossRefGoogle Scholar
  29. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144PubMedCrossRefGoogle Scholar
  30. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:643–649Google Scholar
  31. Kim JM, To TK, Nishioka T, Seki M (2010) Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ 33:604–611PubMedCrossRefGoogle Scholar
  32. Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460:1085–1086PubMedCrossRefGoogle Scholar
  33. Laurent G 3rd, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131:299–305CrossRefGoogle Scholar
  34. Lefort N, Perrier AL, Laâbi Y, Varela C, Peschanski M (2009) Human embryonic stem cells and genomic instability. Regen Med 4:899–909PubMedCrossRefGoogle Scholar
  35. Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139PubMedCrossRefGoogle Scholar
  36. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedCrossRefGoogle Scholar
  37. Lund RJ, Närvä E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744PubMedCrossRefGoogle Scholar
  38. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136PubMedCrossRefGoogle Scholar
  39. Macia A, Muñoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, Garcia-Perez JL (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31:300–316PubMedCrossRefGoogle Scholar
  40. Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153PubMedCrossRefGoogle Scholar
  41. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531PubMedCrossRefGoogle Scholar
  42. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  43. McKay R (2000) Stem cells—hype and hope. Nature 406:361–364PubMedCrossRefGoogle Scholar
  44. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546PubMedCrossRefGoogle Scholar
  45. Mezey E (2011) The therapeutic potential of bone marrow-derived stromal cells. J Cell Biochem 112:2683–2687PubMedCrossRefGoogle Scholar
  46. Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11:51–66PubMedCrossRefGoogle Scholar
  47. Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12:661–684PubMedCrossRefGoogle Scholar
  48. Murray V (1990) Are transposons a cause of ageing? Mutat Res 237:59–63PubMedCrossRefGoogle Scholar
  49. Nguyen HT, Geens M, Spits C (2013) Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update 19:187–205PubMedCrossRefGoogle Scholar
  50. Ogawa M, Larue AC, Mehrotra M (2013) Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis 51:3–8PubMedCrossRefGoogle Scholar
  51. Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. BioEssays 31:703–714PubMedCrossRefGoogle Scholar
  52. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020PubMedGoogle Scholar
  53. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600PubMedCrossRefGoogle Scholar
  54. Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250PubMedGoogle Scholar
  55. Shoshani O, Zipori D (2011) Mammalian cell dedifferentiation as a possible outcome of stress. Stem Cell Rev 7:488–493PubMedCrossRefGoogle Scholar
  56. Smith KT, Workman JL (2012) Chromatin proteins: key responders to stress. PLoS Biol 10:e1001371PubMedCrossRefGoogle Scholar
  57. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  58. Tamada H, Kikyo N (2004) Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet Genome Res 105:285–291PubMedCrossRefGoogle Scholar
  59. Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16:5719–5735PubMedCrossRefGoogle Scholar
  60. Tsai YP, Wu KJ (2013) Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer. doi:10.1002/ijc.28190 Google Scholar
  61. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148PubMedCrossRefGoogle Scholar
  62. William EL, Plath K (2008) The many ways to make an iPS cell. Nature Biotechnol 26:1246–1248CrossRefGoogle Scholar
  63. Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228:113–120PubMedCrossRefGoogle Scholar
  64. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778PubMedCrossRefGoogle Scholar
  65. Zhu W, Kuo D, Nathanson J, Satoh A, Pao GM, Yeo GW, Bryant SV, Voss SR, Gardiner DM, Hunter T (2012) Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Differ 54:673–685PubMedCrossRefGoogle Scholar
  66. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael

Personalised recommendations