Skip to main content
Log in

Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

WRN is a RecQ helicase with an associated exonuclease activity important in DNA metabolism, including DNA replication, repair and recombination. In humans, deficiencies in WRN function cause the segmental progeroid Werner syndrome (WS), in which patients show premature onset of many hallmarks of normal human ageing. At the cellular level, WRN loss results in rapid replicative senescence, chromosomal instability and sensitivity to various DNA damaging agents including the topoisomerase inhibitor, camptothecin (CPT). Here, we investigate the potential of using either transient or stable WRN knockdown as a means of sensitising cells to CPT. We show that targeting WRN mRNA for degradation by either RNAi or hammerhead ribozyme catalysis renders human fibroblasts as sensitive to CPT as fibroblasts derived from WS patients, and furthermore, we find altered cell cycle transit and nucleolar destabilisation in these cells following CPT treatment. Such WS-like phenotypes are observed despite very limited decreases in total WRN protein, suggesting that levels of WRN protein are rate-limiting for the cellular response to camptothecin. These findings have major implications for development of anti-WRN agents that may be useful in sensitising tumour cells to clinically relevant topoisomerase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrelo R, Cheng WH, Setien F, Ropero S, Espada J, Fraga MF, Herranz M, Paz MF, Sanchez-Cespedes M, Artiga MJ, Guerrero D, Castells A, von Kobbe C, Bohr VA et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103(23):8822–8827

    Article  PubMed  CAS  Google Scholar 

  • Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24(11):2011–2023

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2(3):243–247

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309(5736):886–887

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Muftuoglu M, Bohr VA (2007) Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42(9):871–878

    Article  PubMed  CAS  Google Scholar 

  • Christmann M, Tomicic MT, Gestrich C, Roos WP, Bohr VA, Kaina B (2008) WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair (Amst) 7(12):1999–2009

    Article  CAS  Google Scholar 

  • Citti L, Rainaldi G (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5(1):11–24

    PubMed  CAS  Google Scholar 

  • Citti L, Eckstein F, Capecchi B, Mariani L, Nevischi S, Poggi A, Rainaldi G (1999) Transient transfection of a synthetic hammerhead ribozyme targeted against human MGMT gene to cells in culture potentiates the genotoxicity of the alkylation damage induced by mitozolomide. Antisense Nucleic Acid Drug Dev 9(2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Clingen PH, Lowe JE, Green MHL (2000) Measurement of DNA damage and repair capacity as a function of age using the Comet assay. In: Barnett YA, Barnett CR (eds) Methods in molecular medicine, vol 38: ageing methods and protocols. Human Press, Totowa, NJ, pp 143–157

    Google Scholar 

  • Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64(19–20):2620–2641

    Article  PubMed  CAS  Google Scholar 

  • Franchitto A, Pichierri P (2004) Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3(10):1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y (2007) Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biol Pharm Bull 30(10):1958–1961

    Article  PubMed  CAS  Google Scholar 

  • Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M (2008) Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 99(5):843–848

    Article  PubMed  CAS  Google Scholar 

  • Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5(4):239–246

    PubMed  CAS  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C, Hannon GJ, Lowe SW (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33(3):396–400

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′ → 5′ exonuclease. Nat Genet 20(2):114–116

    Article  PubMed  CAS  Google Scholar 

  • Huschtscha LI, Thompson KV, Holliday R (1986) The susceptibility of Werner’s syndrome and other human skin fibroblasts to SV40-induced transformation and immortalization. Proc R Soc Lond B Biol Sci 229(1254):1–12

    Article  PubMed  CAS  Google Scholar 

  • Karmakar P, Bohr VA (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126(11):1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Davis T, Ostler EL, Faragher RG (2004) What can progeroid syndromes tell us about human aging? Science 305(5689):1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8(5):394–404

    Article  PubMed  CAS  Google Scholar 

  • Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular replicative capacity. Proc Natl Acad Sci USA 95:13097–13102

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Sheerin A, Jennert-Burston K, Burton D, Ostler EL, Bird J, Green MH, Faragher RG (2004) Camptothecin sensitivity in Werner syndrome fibroblasts as assessed by the COMET technique. Ann N Y Acad Sci 1019:256–259

    Article  PubMed  CAS  Google Scholar 

  • Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 35(17):5729–5747

    Article  PubMed  CAS  Google Scholar 

  • Montgomery RA, Dietz HC (1997) Inhibition of fibrillin 1 expression using U1 snRNA as a vehicle for the presentation of antisense targeting sequence. Hum Mol Genet 6(4):519–525

    Article  PubMed  CAS  Google Scholar 

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101(2):121–125

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Goto M, Furuichi Y, Sugimoto M (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21(3):235–239

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, Calvo JP, von Kobbe C (2007) Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 128(7–8):423–436

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958

    Article  PubMed  CAS  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2000) Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 456(1–2):45–57

    PubMed  CAS  Google Scholar 

  • Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum-Genet 104(1):10–14

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1(1):30–39

    Article  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Whitby MC, Borer CM, Bachler MA, Cox LS (2007) Correction of proliferation and drug sensitivity defects in the progeroid Werner’s Syndrome by Holliday junction resolution. Rejuvenation Res 10(1):27–40

    Article  PubMed  CAS  Google Scholar 

  • Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA repair 9(3):331–344

    Article  PubMed  CAS  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Kamath Loeb AS, Fry M, Loeb LA (1998) Werner syndrome protein. I. DNA helicase and DNA exonuclease reside on the same polypeptide. J Biol Chem 273(51):34139–34144

    Article  PubMed  CAS  Google Scholar 

  • Sidorova JM, Li N, Folch A, Monnat RJ, Jr (2008) The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7(6):796–807

    Google Scholar 

  • Sledz CA, Williams BR (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 32(Pt 6):952–956

    PubMed  CAS  Google Scholar 

  • Suzuki N, Shimamoto A, Imamura O, Kuromitsu J, Kitao S, Goto M, Furuichi Y (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25(15):2973–2978

    Article  PubMed  CAS  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs Christine Borer for technical support to LSC and MAB. This work was funded by the BBSRC grants [107/EGH16152 and 107/ERA16270] to RGAF, JLEB, KJ-B and JL, BBSRC grants [BB/E000924/1] and [43/ERA16310] and ESRC programme grant [ES/G037086/1] (under the cross-council New Dynamics of Ageing initiative) to LSC, and NIH grant AG024399 to JC.

Conflicts of interest

The authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Cox.

Additional information

Joseph L. E. Bird and Katrin C. B. Jennert-Burston contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, J.L.E., Jennert-Burston, K.C.B., Bachler, M.A. et al. Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease. Biogerontology 13, 49–62 (2012). https://doi.org/10.1007/s10522-011-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9341-8

Keywords

Navigation