Advertisement

Biogerontology

, Volume 13, Issue 1, pp 49–62 | Cite as

Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease

  • Joseph L. E. Bird
  • Katrin C. B. Jennert-Burston
  • Marcus A. Bachler
  • Penelope A. Mason
  • Jill E. Lowe
  • Seok-Jin Heo
  • Judith Campisi
  • Richard G. A. Faragher
  • Lynne S. Cox
Research Article

Abstract

WRN is a RecQ helicase with an associated exonuclease activity important in DNA metabolism, including DNA replication, repair and recombination. In humans, deficiencies in WRN function cause the segmental progeroid Werner syndrome (WS), in which patients show premature onset of many hallmarks of normal human ageing. At the cellular level, WRN loss results in rapid replicative senescence, chromosomal instability and sensitivity to various DNA damaging agents including the topoisomerase inhibitor, camptothecin (CPT). Here, we investigate the potential of using either transient or stable WRN knockdown as a means of sensitising cells to CPT. We show that targeting WRN mRNA for degradation by either RNAi or hammerhead ribozyme catalysis renders human fibroblasts as sensitive to CPT as fibroblasts derived from WS patients, and furthermore, we find altered cell cycle transit and nucleolar destabilisation in these cells following CPT treatment. Such WS-like phenotypes are observed despite very limited decreases in total WRN protein, suggesting that levels of WRN protein are rate-limiting for the cellular response to camptothecin. These findings have major implications for development of anti-WRN agents that may be useful in sensitising tumour cells to clinically relevant topoisomerase inhibitors.

Keywords

Werner syndrome WRN RecQ Camptothecin Topoisomerase RNAi Ribozyme Aging Cancer 

Notes

Acknowledgments

We thank Mrs Christine Borer for technical support to LSC and MAB. This work was funded by the BBSRC grants [107/EGH16152 and 107/ERA16270] to RGAF, JLEB, KJ-B and JL, BBSRC grants [BB/E000924/1] and [43/ERA16310] and ESRC programme grant [ES/G037086/1] (under the cross-council New Dynamics of Ageing initiative) to LSC, and NIH grant AG024399 to JC.

Conflicts of interest

The authors state no conflicts of interest.

References

  1. Agrelo R, Cheng WH, Setien F, Ropero S, Espada J, Fraga MF, Herranz M, Paz MF, Sanchez-Cespedes M, Artiga MJ, Guerrero D, Castells A, von Kobbe C, Bohr VA et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103(23):8822–8827PubMedCrossRefGoogle Scholar
  2. Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24(11):2011–2023PubMedCrossRefGoogle Scholar
  3. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2(3):243–247PubMedCrossRefGoogle Scholar
  4. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309(5736):886–887PubMedCrossRefGoogle Scholar
  5. Cheng WH, Muftuoglu M, Bohr VA (2007) Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42(9):871–878PubMedCrossRefGoogle Scholar
  6. Christmann M, Tomicic MT, Gestrich C, Roos WP, Bohr VA, Kaina B (2008) WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair (Amst) 7(12):1999–2009CrossRefGoogle Scholar
  7. Citti L, Rainaldi G (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5(1):11–24PubMedGoogle Scholar
  8. Citti L, Eckstein F, Capecchi B, Mariani L, Nevischi S, Poggi A, Rainaldi G (1999) Transient transfection of a synthetic hammerhead ribozyme targeted against human MGMT gene to cells in culture potentiates the genotoxicity of the alkylation damage induced by mitozolomide. Antisense Nucleic Acid Drug Dev 9(2):125–133PubMedCrossRefGoogle Scholar
  9. Clingen PH, Lowe JE, Green MHL (2000) Measurement of DNA damage and repair capacity as a function of age using the Comet assay. In: Barnett YA, Barnett CR (eds) Methods in molecular medicine, vol 38: ageing methods and protocols. Human Press, Totowa, NJ, pp 143–157Google Scholar
  10. Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64(19–20):2620–2641PubMedCrossRefGoogle Scholar
  11. Franchitto A, Pichierri P (2004) Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3(10):1331–1339PubMedCrossRefGoogle Scholar
  12. Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y (2007) Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biol Pharm Bull 30(10):1958–1961PubMedCrossRefGoogle Scholar
  13. Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M (2008) Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 99(5):843–848PubMedCrossRefGoogle Scholar
  14. Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5(4):239–246PubMedGoogle Scholar
  15. Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103PubMedCrossRefGoogle Scholar
  16. Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C, Hannon GJ, Lowe SW (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33(3):396–400PubMedCrossRefGoogle Scholar
  17. Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′ → 5′ exonuclease. Nat Genet 20(2):114–116PubMedCrossRefGoogle Scholar
  18. Huschtscha LI, Thompson KV, Holliday R (1986) The susceptibility of Werner’s syndrome and other human skin fibroblasts to SV40-induced transformation and immortalization. Proc R Soc Lond B Biol Sci 229(1254):1–12PubMedCrossRefGoogle Scholar
  19. Karmakar P, Bohr VA (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126(11):1146–1158PubMedCrossRefGoogle Scholar
  20. Kipling D, Davis T, Ostler EL, Faragher RG (2004) What can progeroid syndromes tell us about human aging? Science 305(5689):1426–1431PubMedCrossRefGoogle Scholar
  21. Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8(5):394–404PubMedCrossRefGoogle Scholar
  22. Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular replicative capacity. Proc Natl Acad Sci USA 95:13097–13102PubMedCrossRefGoogle Scholar
  23. Lowe J, Sheerin A, Jennert-Burston K, Burton D, Ostler EL, Bird J, Green MH, Faragher RG (2004) Camptothecin sensitivity in Werner syndrome fibroblasts as assessed by the COMET technique. Ann N Y Acad Sci 1019:256–259PubMedCrossRefGoogle Scholar
  24. Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 35(17):5729–5747PubMedCrossRefGoogle Scholar
  25. Montgomery RA, Dietz HC (1997) Inhibition of fibrillin 1 expression using U1 snRNA as a vehicle for the presentation of antisense targeting sequence. Hum Mol Genet 6(4):519–525PubMedCrossRefGoogle Scholar
  26. Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101(2):121–125PubMedCrossRefGoogle Scholar
  27. Okada M, Goto M, Furuichi Y, Sugimoto M (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21(3):235–239PubMedCrossRefGoogle Scholar
  28. Opresko PL, Calvo JP, von Kobbe C (2007) Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 128(7–8):423–436PubMedCrossRefGoogle Scholar
  29. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958PubMedCrossRefGoogle Scholar
  30. Pichierri P, Franchitto A, Mosesso P, Palitti F (2000) Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 456(1–2):45–57PubMedGoogle Scholar
  31. Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum-Genet 104(1):10–14PubMedCrossRefGoogle Scholar
  32. Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1(1):30–39PubMedCrossRefGoogle Scholar
  33. Rodriguez-Lopez AM, Whitby MC, Borer CM, Bachler MA, Cox LS (2007) Correction of proliferation and drug sensitivity defects in the progeroid Werner’s Syndrome by Holliday junction resolution. Rejuvenation Res 10(1):27–40PubMedCrossRefGoogle Scholar
  34. Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA repair 9(3):331–344PubMedCrossRefGoogle Scholar
  35. Shen JC, Gray MD, Oshima J, Kamath Loeb AS, Fry M, Loeb LA (1998) Werner syndrome protein. I. DNA helicase and DNA exonuclease reside on the same polypeptide. J Biol Chem 273(51):34139–34144PubMedCrossRefGoogle Scholar
  36. Sidorova JM, Li N, Folch A, Monnat RJ, Jr (2008) The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7(6):796–807Google Scholar
  37. Sledz CA, Williams BR (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 32(Pt 6):952–956PubMedGoogle Scholar
  38. Suzuki N, Shimamoto A, Imamura O, Kuromitsu J, Kitao S, Goto M, Furuichi Y (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25(15):2973–2978PubMedCrossRefGoogle Scholar
  39. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Joseph L. E. Bird
    • 1
    • 5
  • Katrin C. B. Jennert-Burston
    • 1
  • Marcus A. Bachler
    • 2
  • Penelope A. Mason
    • 2
  • Jill E. Lowe
    • 1
  • Seok-Jin Heo
    • 3
  • Judith Campisi
    • 4
  • Richard G. A. Faragher
    • 1
  • Lynne S. Cox
    • 2
  1. 1.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
  2. 2.Department of BiochemistryUniversity of OxfordOxfordUK
  3. 3.Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Buck Institute for Research on AgingNovatoUSA
  5. 5.Wolfson Brain Imaging Centre, Department of MedicineUniversity of Cambridge, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations