Skip to main content
Log in

Oxidative stress and intracellular pH in the young and old erythrocytes of rat

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The effects of oxidative stress (OS) on the rat erythrocytes (RBCs) that were fractionated on the percoll/BSA gradient into young and old cells were studied to find out if the altered Na+ /H+ and Cl/HCO3 antiporters and in turn the intracellular pH (pHi) could act as one of the promoters of cell death. Old cells were more spherical with lesser surface area, more fragile osmotically and had lesser protein sulphydryl content than the young cells. OS was induced in RBCs by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). AAPH increased the superoxide dismutase (SOD) activity and MDA level and, the changes between the young and old. Interestingly, vitamin C was effective in reducing MDA in the old. Further, in the old a rapid Na+-dependent acidification in the presence of AAPH and a marginal acidosis in the presence of vitamin C were evident. Old RBCs exhibited higher acidosis and vitamin C was less effective in lowering the stress-induced acidosis compared to the young. Our studies suggest that increased acidosis followed by low intracellular pH could be one of the determinant factors for the disappearance of old RBCs from circulation, and perhaps of the young too under OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando K, Beppu M, Kikugawa K (1995) Evidence for accumulation of lipid hydroperoxides during the aging of human RBCs in the circulation. Biol Pharm Bull 18:603–659

    Google Scholar 

  • Asha DS, Subramanyam MVV, Vani R, Jeevaratnam K (2005) Adaptations of the antioxidant system in erythrocytes of trained adult rats: impact of intermittent hypobaric–hypoxia at two altitudes. Comp Biochem Physiol 140(Part C):59–67. doi:10.1016/j.cca.2005.01.003

    Google Scholar 

  • Asha DS, Vani R, Subramanyam MVV, Shiva Shankar Reddy CS, Jeevaratnam K (2007) Intermittent hypobaric hypoxia-induced oxidative stress in rat erythrocytes: protective effects of vitamin E, vitamin C and carnitine. Cell Biochem Funct 25:221–231. doi:10.1002/cbf.1344

    Article  Google Scholar 

  • Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione. J Biol Chem 270:24876–24883. doi:10.1074/jbc.270.42.24876

    Article  CAS  PubMed  Google Scholar 

  • Bartosz G (1990) Erythrocyte membrane changes during aging in vivo. In: Harris JR (ed) Blood cell biochemistry. Erythroid cells. Springer, New York, pp 50–62

    Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Bourikas D, Kaloyianni M, Bougoulia M, Zolota Z, Kolikas G (2003) Modulation of the Na+-H+ antiport activity by adrenaline on erythrocytes from normal and obese individuals. Mol Cell Endocrinol 205:141–150. doi:10.10161/S)303-7207(03)00092-3

    Article  CAS  PubMed  Google Scholar 

  • Canessa M, Fabry MR, Suzuka SM, Morgan K, Nagel RL (1990) Na+/H+ exchange is increased in sickle cell anemia and young normal cells. J Membr Biol 116:107–115. doi:10.1007/BF01868669

    Article  CAS  PubMed  Google Scholar 

  • Canessa M, Falkner B, Hulman S (1993) Red blood cell sodium–proton exchange in hypertensive blocks insulin-resistant glucose disposal. Hypertension 22:204–213

    CAS  PubMed  Google Scholar 

  • Casey JR, Reithmeir RA (1998) Anion exchangers in the red blood cell and beyond. Biochem Cell Biol 76:709–713. doi:10.1139/bcb-76-5-709

    Article  CAS  PubMed  Google Scholar 

  • Claro LM, Leonart MSS, Cornar SR, Nascimento AJ (2006) Effect of vitamins C and E on oxidative processes in human erythrocytes. Cell Biochem Funct 24:531–535. doi:10.1002/cbf.1255

    Article  CAS  PubMed  Google Scholar 

  • Colado Simao AN, Suzukawa AA, Casado MF, Oliveira RD, Guarnier FA, Cecchini R (2006) Genistein abrogates pre-hemolytic and oxidative stress damage induced by 2, 2′-Azobis (Amidinopropane). Life Sci 78:1202–1210. doi:10:1016/j.lfs.2005.06-047

    Article  PubMed  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130. doi:10:10166/0003-98963)90042-0

    Article  CAS  PubMed  Google Scholar 

  • Duranton C, Huber SM, Lang F (2002) Oxidative stress induces a chloride-dependent cation conductance in human red blood cells. J Physiol 539:847–855. doi:10:1113/jphysiol.2001.013040

    Article  CAS  PubMed  Google Scholar 

  • Escobales N, Canessa M (1986) Amiloride-sensitive Na+ transport in human red cells: evidence for Na+/H+ exchange system. J Membr Biol 90:21–28. doi:10.1007/BFO1869862

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247. doi:10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  • Ganzoni AM, Oakes R, Hillman RS (1971) Red cell aging in vivo. J Clin Invest 50:1373–1380. doi:10.1172/JCI106619

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez G, Celedon G, Sandoval M, Gonzalez GE, Ferrer V, Astete R, Behn C (2002) Hypobaric hypoxia-reoxygenation dimishes band 3 protein functions in human erythrocytes. Pflugers Arch 445:337–341. doi:10.1007/s00424-002-0967-x

    Article  CAS  PubMed  Google Scholar 

  • Greco FA, Solomon AK (1997) Kinetics of chloride–bicarbonate exchange across the human red blood cell membrane. J Membr Biol 159:197–208. doi:10.1007/s002329900283

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Cohen S, Rothstein A (1984) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol 83:341–369. doi:10.1085/jgp.83.3.341

    Article  CAS  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate aging in model organisms. Nature 408:255–262. doi:10.1038/35041700

    Article  CAS  PubMed  Google Scholar 

  • Habeeb AFSA (1972) Reaction of protein sulphydryl groups with Ellman’s reagent. Methods Enzymol 34:457–464. doi:10.1016/S0076-6879(72)25041-8

    Article  Google Scholar 

  • Ivanova L, Bernhardt R, Bernhardt I (2008) Nongenomic effect of aldosterone on ion transport pathways of red blood cells. Cell Physiol Biochem 22:269–278. doi:10:1159/000149805

    Article  CAS  PubMed  Google Scholar 

  • Jennings ML (1985) Kinetics and mechanism of anion transport in red blood cells. Annu Rev Physiol 47:519–533. doi:10.1146/annurev.ph.47.030185.002511

    Article  CAS  PubMed  Google Scholar 

  • Jennings ML, Douglas SM, Mc Andrew PE (1986) Amiloride sensitive sodium–hydrogen exchange in osmotically shrunken rabbit red blood cell. Am J Physiol 251:C31–C50

    Google Scholar 

  • Kurata M, Suzuki M, Agar NS (1993) Antioxidant system and erythrocyte life span in mammals. Comp Biochem Physiol B 106:477–487. doi:10.1016/0305-0491(93)90121-1C

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Waldogger S, Gulbins E, Hanssin D (1998) Functional significance of cell volume regulatory mechanism. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Lasch J, Küllertz G, Opalka JR (2000) Separationof erythrocytes into age-related fractions by density or size? Counterflow centrifugation. Clin Chim Acta 38:629–632

    CAS  Google Scholar 

  • May JM (1998) Ascorbate function and metabolism in the human erythrocytes. Front Biosci 3:1–10

    Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Noel J, Pouyssegur J (1995) Hormonal regulation, pharmacology and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am J Physiol 268:C283–C296

    CAS  PubMed  Google Scholar 

  • O’Dell BL, Browning JD, Reeves PG (1986) Zinc deficiency increases the osmotic fragility of rat erythrocytes. J Nutr 117:1883–1889

    Google Scholar 

  • Ogiso T, Iwaki M, Takagi T, Hirai I, Kashiyama T (1985) Increased sensitivity of aged erythrocytes to drugs and age-related loss of cell componenets. Chem Phar Bull 33:5404–5412

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  • Omaye ST, Turbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 62:3–11. doi:10.1016/0076-6879(79)62181-X

    Article  CAS  PubMed  Google Scholar 

  • Orlowski J, Grinstein S (2003) Diversity of mammalian sodium/proton exchanger SLC 9 gene family. Pflugers Arch Eur J Phys 447:549–568. doi:10.1007/s00424-003-1110-3

    Article  Google Scholar 

  • Parker MD, Tanner MJA (2004) The disruption of the third extra cellular loop of red cell anion exchanger AE1 does not affect electroneutral Cl(−)/HCO(3)(−) exchange activity. Blood Cells Mol Dis 32:379–383. doi:10:1016/j.bcmd.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  • Parker JC, Colclasune GC, McManus TI (1991) Coordinated regulation of shrinkage-induced Na+/H+ exchange and swelling-induced (K-Cl) cotransport in dog red cells. Further evidence from activation kinetics at phosphatase inhibition. J Gen Physiol 98:869–890. doi:10.1085/jgp.98.5.869

    Article  CAS  PubMed  Google Scholar 

  • Passow H (1986) Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol 103:61–203

    CAS  PubMed  Google Scholar 

  • Pedersen SF, Cala PM (2004) Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes. J Exp Zool 301A:561–578. doi:10.1002/jeza.47

    Article  Google Scholar 

  • Petibois C, D’el’ens G (2004) Oxidative stress effects on erythrocytes determined by FT–IR spectroscopy. Analysis 129:912–916

    CAS  Google Scholar 

  • Rennie CM, Thompson S, Parker AC, Maddy A (1979) Human erythrocyte fractionation in ‘Percoll’ density gradients. Clin Chim Acta 98:119–125. doi:10.1016/0009-8981(79)90172-4

    Article  CAS  PubMed  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF (1993) Inhibition of calcium pumps of intact red blood cells by t-butyl hydroperoxide importance of glutathione peroxidase. Biochem Biophys Acta 1153:67–76. doi:10.1016/0005-2736993)902777-7

    Article  CAS  PubMed  Google Scholar 

  • Salhany JM, Cordes KA, Sloan RL (1998) Characterization of the pH dependence of hemoglobin binding to band 3: evidence for a pH-dependent conformational change within the hemoglobin-band 3 complex. Biochim Biophys Acta 1371:107–113. doi:10-1016/S0005-2736(98)00009-1

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka T, Takei S, Yanagido J, Watanabe H, Ohkuma S (1988) Binding of lectins to “young” and “old” human erythrocytes. Ann Hematol 57:117–123

    CAS  Google Scholar 

  • Shiva Shankar Reddy CS, Subramanyam MVV, Vani R, Asha DS (2007) In vitro models of oxidative stress in rat erythrocytes: effect of antioxidant supplements. Toxicol In Vitro 21:1355–1364. doi:10.1016/j.tiv.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  • Tobey NA, Reddy SR, Khalbuss WE, Silvers SM, Cragoe EJ, Orlando RC (1993) Na+-dependent and -independent Cl/HC0 3 exchangers in cultured rabbit esophageal epithelial cells. Gastroenterology 104:185–195

    CAS  PubMed  Google Scholar 

  • Vissers MCM, Stern F, Kuypers JJM, Berg VD, Winterbourn CC (1994) Membrane changes associated with lysis of red blood cells by hypochlorous acid. Free Radic Biol Med 16:703–712. doi:10.1016/0891-5849(94)90185-6

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi S, Shigekawa M, Pouyssegur J (1997) Molecular physiology of vertebrate Na+/H+ exchanger. Physiol Rev 77:51–74

    CAS  PubMed  Google Scholar 

  • Wehner F, Olsen H, Tinel H, Kinne-saffron E, Kinne RKH (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 148:1–80. doi:10.1007/s10254-003-0009-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the grants received by the Department of Science and Technology (DST, SP/SO/AS-58/2004), New Delhi to Ms. S. Asha Devi. We would like to thank Ms. R. Vani, for the technical assistance and Prof. M.A. Yadugiri for editing the initial draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asha Devi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asha Devi, S., Shiva Shankar Reddy, C.S. & Subramanyam, M.V.V. Oxidative stress and intracellular pH in the young and old erythrocytes of rat. Biogerontology 10, 659–669 (2009). https://doi.org/10.1007/s10522-009-9212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9212-8

Keywords

Navigation