Skip to main content

Advertisement

Log in

Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The maintenance of the stability of genetic material is an essential feature of every living organism. Organisms across all kingdoms have evolved diverse and highly efficient repair mechanisms to protect the genome from deleterious consequences of various genotoxic factors that might tend to destabilize the integrity of the genome in each generation. One such group of proteins that is actively involved in genome surveillance is the RecQ helicase family. These proteins are highly conserved DNA helicases, which have diverse roles in multiple DNA metabolic processes such as DNA replication, recombination and DNA repair. In humans, five RecQ helicases have been identified and three of them namely, WRN, BLM and RecQL4 have been linked to genetic diseases characterized by genome instability, premature aging and cancer predisposition. This helicase family plays important roles in various DNA repair pathways including protecting the genome from illegitimate recombination during chromosome segregation in mitosis and assuring genome stability. This review mainly focuses on various roles of human RecQ helicases in the process of recombination-based DNA repair to maintain genome stability and physiological consequences of their defects in the development of cancer and premature aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MD, McVey M, Sekelsky JJ (2003) Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267

    Article  PubMed  CAS  Google Scholar 

  • Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M (2000) DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol 20:8283–8289. doi:10.1128/MCB.20.21.8283-8289.2000

    Article  PubMed  CAS  Google Scholar 

  • Anbari KK, Ierardi-Curto LA, Silber JS, Asada N, Spinner N, Zackai EH, Belasco J, Morrissette JD, Dormans JP (2000) Two primary osteosarcomas in a patient with Rothmund–Thomson syndrome. Clin Orthop Relat Res 378:213–223. doi:10.1097/00003086-200009000-00032

    Google Scholar 

  • Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577–606. doi:10.1042/BJ20030491

    Article  PubMed  CAS  Google Scholar 

  • Bachrati CZ, Hickson ID (2008) RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117:219–233. doi:10.1007/s00412-007-0142-4

    Article  PubMed  CAS  Google Scholar 

  • Baird DM, Davis T, Rowson J, Jones CJ, Kipling D (2004) Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells. Hum Mol Genet 13:1515–1524. doi:10.1093/hmg/ddh159

    Article  PubMed  CAS  Google Scholar 

  • Baynton K, Otterlei M, Bjoras M, von Kobbe C, Bohr VA, Seeberg E (2003) WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278:36476–36486. doi:10.1074/jbc.M303885200

    Article  PubMed  CAS  Google Scholar 

  • Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (2002) Functional link between BLM defective in Bloom’s syndrome and the ataxia-telangiectasia-mutated protein, ATM. J Biol Chem 277:30515–30523. doi:10.1074/jbc.M203801200

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  PubMed  CAS  Google Scholar 

  • Bohr VA, Souza Pinto N, Nyaga SG, Dianov G, Kraemer K, Seidman MM, Brosh RM Jr (2001) DNA repair and mutagenesis in Werner syndrome. Environ Mol Mutagen 38:227–234. doi:10.1002/em.1076

    Article  PubMed  CAS  Google Scholar 

  • Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (2003) Functional interaction between the Bloom’s syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). J Biol Chem 278:48357–48366. doi:10.1074/jbc.M308838200

    Article  PubMed  CAS  Google Scholar 

  • Brosh RM Jr, Bohr VA (2007) Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res 35:7527–7544. doi:10.1093/nar/gkm1008

    Article  PubMed  CAS  Google Scholar 

  • Bugreev DV, Yu X, Egelman EH, Mazin AV (2007) Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21:3085–3094. doi:10.1101/gad.1609007

    Article  PubMed  CAS  Google Scholar 

  • Bugreev DV, Brosh RM Jr, Mazin AV (2008) RECQ1 possesses DNA branch migration activity. J Biol Chem 283:20231–20242. doi:10.1074/jbc.M801582200

    Article  PubMed  CAS  Google Scholar 

  • Bussen W, Raynard S, Busygina V, Singh AK, Sung P (2007) Holliday junction processing activity of the BLM-topo IIIalpha-BLAP75 complex. J Biol Chem 282:31484–31492. doi:10.1074/jbc.M706116200

    Article  PubMed  CAS  Google Scholar 

  • Cabral RE, Queille S, Bodemer C, de Prost Y, Neto JB, Sarasin A, Daya-Grosjean L (2008) Identification of new RECQL4 mutations in Caucasian Rothmund–Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. Mutat Res 643:41–47. doi:10.1016/j.mrfmmm.2008.06.002

    PubMed  CAS  Google Scholar 

  • Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890. doi:10.1038/ncb1444

    Article  PubMed  CAS  Google Scholar 

  • Chaganti RS, Schonberg S, German J (1974) A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71:4508–4512

    Article  PubMed  CAS  Google Scholar 

  • Chakraverty RK, Hickson ID (1999) Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays 21:286–294. doi:10.1002/(SICI)1521-1878(199904)21:4<286::AID-BIES4>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K, Seidman MM, Carney JP, Bohr VA (2004) Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279:21169–21176. doi:10.1074/jbc.M312770200

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA (2006) Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–2760. doi:10.1093/nar/gkl362

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA (2008) WRN is required for ATM Activation and the S-phase checkpoint in response to interstrand crosslink-induced DNA double strand breaks. Molecular biology of the cell. Mol Biol Cell 19:3923–3933

    Google Scholar 

  • Choi D, Whittier PS, Oshima J, Funk WD (2001) Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cell strains. FASEB J 15:1014–1020. doi:10.1096/fj.00-0104com

    Article  PubMed  CAS  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1:80–84. doi:10.1093/embo-reports/kvd004

    Article  PubMed  CAS  Google Scholar 

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912

    PubMed  CAS  Google Scholar 

  • Cox LS, Faragher RG (2007) From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 64:2620–2641. doi:10.1007/s00018-007-7123-x

    Article  PubMed  CAS  Google Scholar 

  • Davalos AR, Kaminker P, Hansen RK, Campisi J (2004) ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 3:1579–1586

    PubMed  CAS  Google Scholar 

  • Davies SL, North PS, Dart A, Lakin ND, Hickson ID (2004) Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 24:1279–1291. doi:10.1128/MCB.24.3.1279-1291.2004

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. doi:10.1101/gad.1346005

    Article  PubMed  CAS  Google Scholar 

  • De Silva IU, McHugh PJ, Clingen PH, Hartley JA (2000) Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 20:7980–7990. doi:10.1128/MCB.20.21.7980-7990.2000

    Article  PubMed  Google Scholar 

  • Der Kaloustian VM, McGill JJ, Vekemans M, Kopelman HR (1990) Clonal lines of aneuploid cells in Rothmund–Thomson syndrome. Am J Med Genet 37:336–339. doi:10.1002/ajmg.1320370308

    Article  PubMed  CAS  Google Scholar 

  • Du X, Shen J, Kugan N, Furth EE, Lombard DB, Cheung C, Pak S, Luo G, Pignolo RJ, DePinho RA, Guarente L, Johnson FB (2004) Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 24:8437–8446. doi:10.1128/MCB.24.19.8437-8446.2004

    Article  PubMed  CAS  Google Scholar 

  • Durand F, Castorina P, Morant C, Delobel B, Barouk E, Modiano P (2002) Rothmund–Thomson syndrome, trisomy 8 mosaicism and RECQ4 gene mutation. Ann Dermatol Venereol 129:892–895

    PubMed  CAS  Google Scholar 

  • Eller MS, Liao X, Liu S, Hanna K, Backvall H, Opresko PL, Bohr VA, Gilchrest BA (2006) A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci USA 103:15073–15078. doi:10.1073/pnas.0607332103

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ, Martin GM, Motulsky AG (1965) Werner’s syndrome; caricature of aging. A genetic model for the study of degenerative diseases. Trans Assoc Am Physicians 78:73–81

    PubMed  CAS  Google Scholar 

  • Fan W, Luo J (2008) RecQ4 facilitates UV-induced DNA damage repair through interaction with nucleotide excision repair factor XPA. J Biol Chem 283:29037–29044

    Google Scholar 

  • Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S (1993) The gene responsible for Werner syndrome may be a cell division “counting” gene. Proc Natl Acad Sci USA 90:12030–12034. doi:10.1073/pnas.90.24.12030

    Article  PubMed  CAS  Google Scholar 

  • Franchitto A, Pichierri P (2002) Protecting genomic integrity during DNA replication: correlation between Werner’s and Bloom’s syndrome gene products and the MRE11 complex. Hum Mol Genet 11:2447–2453. doi:10.1093/hmg/11.20.2447

    Article  PubMed  CAS  Google Scholar 

  • Franchitto A, Pichierri P (2004) Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3:1331–1339

    PubMed  CAS  Google Scholar 

  • Fukuchi K, Martin GM, Monnat RJ Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 86:5893–5897. doi:10.1073/pnas.86.15.5893

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi K, Tanaka K, Kumahara Y, Marumo K, Pride MB, Martin GM, Monnat RJ Jr (1990) Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum Genet 84:249–252. doi:10.1007/BF00200569

    Article  PubMed  CAS  Google Scholar 

  • German J (1995) Bloom’s syndrome. Dermatol Clin 13:7–18

    PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514. doi:10.1016/S0092-8674(00)80760-6

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Hickson ID (2007) Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 64:2306–2322. doi:10.1007/s00018-007-7121-z

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. doi:10.1038/345458a0

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Takisawa H (2003) Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J 22:2526–2535. doi:10.1093/emboj/cdg238

    Article  PubMed  CAS  Google Scholar 

  • Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3:169–178. doi:10.1038/nrc1012

    Article  PubMed  CAS  Google Scholar 

  • Hoehn H, Bryant EM, Au K, Norwood TH, Boman H, Martin GM (1975) Variegated translocation mosaicism in human skin fibroblast cultures. Cytogenet Cell Genet 15:282–298. doi:10.1159/000130526

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374. doi:10.1038/35077232

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (2001) Evidence for BLM and topoisomerase IIIalpha interaction in genomic stability. Hum Mol Genet 10:1287–1298. doi:10.1093/hmg/10.12.1287

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G (2005) Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 25:3431–3442. doi:10.1128/MCB.25.9.3431-3442.2005

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084. doi:10.1101/gad.1609107

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11:125–129. doi:10.1016/S0960-9822(01)00021-5

    Article  PubMed  CAS  Google Scholar 

  • James SE, Faragher RG, Burke JF, Shall S, Mayne LV (2000) Werner’s syndrome T lymphocytes display a normal in vitro life-span. Mech Ageing Dev 121:139–149. doi:10.1016/S0047-6374(00)00205-0

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Liu H, Zhang Y, Otta SK, Plon SE, Wang LL (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund–Thomson syndrome patients to genotoxic agents. Hum Genet 123:643–653. doi:10.1007/s00439-008-0518-4

    Article  PubMed  CAS  Google Scholar 

  • Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407. doi:10.1093/emboj/19.13.3398

    Article  PubMed  CAS  Google Scholar 

  • Johnson FB, Lombard DB, Neff NF, Mastrangelo MA, Dewolf W, Ellis NA, Marciniak RA, Yin Y, Jaenisch R, Guarente L (2000) Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res 60:1162–1167

    PubMed  CAS  Google Scholar 

  • Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20:905–913. doi:10.1093/emboj/20.4.905

    Article  PubMed  CAS  Google Scholar 

  • Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97:6504–6508. doi:10.1073/pnas.100448097

    Article  PubMed  CAS  Google Scholar 

  • Kawabe T, Tsuyama N, Kitao S, Nishikawa K, Shimamoto A, Shiratori M, Matsumoto T, Anno K, Sato T, Mitsui Y, Seki M, Enomoto T, Goto M, Ellis NA, Ide T, Furuichi Y, Sugimoto M (2000) Differential regulation of human RecQ family helicases in cell transformation and cell cycle. Oncogene 19:4764–4772. doi:10.1038/sj.onc.1203841

    Article  PubMed  CAS  Google Scholar 

  • Khakhar RR, Cobb JA, Bjergbaek L, Hickson ID, Gasser SM (2003) RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 13:493–501. doi:10.1016/S0962-8924(03)00171-5

    Article  PubMed  CAS  Google Scholar 

  • Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y (1999) Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome. Nat Genet 22:82–84. doi:10.1038/8788

    Article  PubMed  CAS  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271. doi:10.1146/annurev.genet.38.072902.091500

    Article  PubMed  CAS  Google Scholar 

  • Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D, Bohr VA (2008) Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–7556. doi:10.1021/bi702325t

    Article  PubMed  CAS  Google Scholar 

  • Laud PR, Multani AS, Bailey SM, Wu L, Ma J, Kingsley C, Lebel M, Pathak S, DePinho RA, Chang S (2005) Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19:2560–2570. doi:10.1101/gad.1321305

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Harrigan J, Opresko PL, Bohr VA (2005) Pathways and functions of the Werner syndrome protein. Mech Ageing Dev 126:79–86. doi:10.1016/j.mad.2004.09.011

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Kozak M, Martin JD, Pennock E, Johnson FB (2007) Evidence that a RecQ helicase slows senescence by resolving recombining telomeres. PLoS Biol 5:e160. doi:10.1371/journal.pbio.0050160

    Article  PubMed  CAS  Google Scholar 

  • Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. doi:10.1038/cr.2008.1

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95:5172–5177. doi:10.1073/pnas.95.9.5172

    Article  PubMed  CAS  Google Scholar 

  • Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350. doi:10.1101/gad.322605

    Article  PubMed  CAS  Google Scholar 

  • Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK, Schonberg SA, German J, Turchi JJ, Orren DK, Groden J (2004) Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 13:1919–1932. doi:10.1093/hmg/ddh193

    Article  PubMed  CAS  Google Scholar 

  • Lindor NM, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S (2000) Rothmund–Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet 90:223–228. doi:10.1002/(SICI)1096-8628(20000131)90:3<223::AID-AJMG7>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Lonn U, Lonn S, Nylen U, Winblad G, German J (1990) An abnormal profile of DNA replication intermediates in Bloom’s syndrome. Cancer Res 50:3141–3145

    PubMed  CAS  Google Scholar 

  • Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M, Youssoufian H, Vogel H, Schultz RA, Bradley A (2000) Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26:424–429. doi:10.1038/82548

    Article  PubMed  CAS  Google Scholar 

  • Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–156. doi:10.1038/sj.onc.1206906

    Article  PubMed  CAS  Google Scholar 

  • Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 35:5729–5747. doi:10.1093/nar/gkm561

    Article  PubMed  CAS  Google Scholar 

  • Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund–Thomson syndrome. Hum Mol Genet 14:813–825. doi:10.1093/hmg/ddi075

    Article  PubMed  CAS  Google Scholar 

  • Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26:4843–4852. doi:10.1128/MCB.02267-05

    Article  PubMed  CAS  Google Scholar 

  • Neumann AA, Reddel RR (2002) Telomere maintenance and cancer–look, no telomerase. Nat Rev Cancer 2:879–884. doi:10.1038/nrc929

    Article  PubMed  CAS  Google Scholar 

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101:121–125. doi:10.1007/s004390050599

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Goto M, Furuichi Y, Sugimoto M (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21:235–239

    PubMed  CAS  Google Scholar 

  • Opresko PL (2008) Telomere ResQue and preservation–roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129:79–90. doi:10.1016/j.mad.2007.10.007

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119. doi:10.1074/jbc.M205396200

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774. doi:10.1016/j.molcel.2004.05.023

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280:32069–32080. doi:10.1074/jbc.M505211200

    Article  PubMed  CAS  Google Scholar 

  • Orstavik KH, McFadden N, Hagelsteen J, Ormerod E, van der Hagen CB (1994) Instability of lymphocyte chromosomes in a girl with Rothmund–Thomson syndrome. J Med Genet 31:570–572

    Article  PubMed  CAS  Google Scholar 

  • Oshima J, Huang S, Pae C, Campisi J, Schiestl RH (2002) Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res 62:547–551

    PubMed  CAS  Google Scholar 

  • Otsuki M, Seki M, Inoue E, Abe T, Narita Y, Yoshimura A, Tada S, Ishii Y, Enomoto T (2008) Analyses of functional interaction between RECQL1, RECQL5, and BLM which physically interact with DNA topoisomerase IIIalpha. Biochim Biophys Acta 1782:75–81

    PubMed  CAS  Google Scholar 

  • Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119:5137–5146. doi:10.1242/jcs.03291

    Article  PubMed  CAS  Google Scholar 

  • Ouyang KJ, Woo LL, Ellis NA (2008) Homologous recombination and maintenance of genome integrity: cancer and aging through the prism of human RecQ helicases. Mech Ageing Dev 129:425–440. doi:10.1016/j.mad.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Lee YJ, Beck BD, Lee SH (2006) A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA Cell Biol 25:696–703. doi:10.1089/dna.2006.25.696

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzi G, Bachrati CZ, Selak N, Studer I, Petkovic M, Hickson ID, Jiricny J, Stagljar I (2003) The Bloom’s syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Biol Chem 384:1155–1164. doi:10.1515/BC.2003.128

    Article  PubMed  CAS  Google Scholar 

  • Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I (2005) The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118:4261–4269. doi:10.1242/jcs.02556

    Article  PubMed  CAS  Google Scholar 

  • Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 23:1178–1187. doi:10.1038/sj.emboj.7600113

    Article  PubMed  CAS  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2000) Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 456:45–57. doi:10.1016/S0027-5107(00)00109-3

    PubMed  CAS  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12:2412–2421

    PubMed  CAS  Google Scholar 

  • Pichierri P, Rosselli F, Franchitto A (2003) Werner’s syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22:1491–1500. doi:10.1038/sj.onc.1206169

    Article  PubMed  CAS  Google Scholar 

  • Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet 104:10–14. doi:10.1007/s004390050903

    Article  PubMed  CAS  Google Scholar 

  • Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226

    PubMed  CAS  Google Scholar 

  • Poot M, Gollahon KA, Emond MJ, Silber JR, Rabinovitch PS (2002) Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 16:757–758

    PubMed  CAS  Google Scholar 

  • Prince PR, Emond MJ, Monnat RJ Jr (2001) Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev 15:933–938. doi:10.1101/gad.877001

    Article  PubMed  CAS  Google Scholar 

  • Ralf C, Hickson ID, Wu L (2006) The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem 281:22839–22846. doi:10.1074/jbc.M604268200

    Article  PubMed  CAS  Google Scholar 

  • Raynard S, Bussen W, Sung P (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281:13861–13864. doi:10.1074/jbc.C600051200

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1:30–39. doi:10.1046/j.1474-9728.2002.00002.x

    Article  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Whitby MC, Borer CM, Bachler MA, Cox LS (2007) Correction of proliferation and drug sensitivity defects in the progeroid Werner’s syndrome by Holliday junction resolution. Rejuvenation Res 10:27–40. doi:10.1089/rej.2006.0503

    Article  PubMed  CAS  Google Scholar 

  • Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr (2002) Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 22:6971–6978. doi:10.1128/MCB.22.20.6971-6978.2002

    Article  PubMed  CAS  Google Scholar 

  • Salk D, Au K, Hoehn H, Martin GM (1985) Cytogenetic aspects of Werner syndrome. Adv Exp Med Biol 190:541–546

    PubMed  CAS  Google Scholar 

  • Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund–Thomson syndrome. Cell 121:887–898. doi:10.1016/j.cell.2005.05.015

    Article  PubMed  CAS  Google Scholar 

  • Sekelsky JJ, Brodsky MH, Rubin GM, Hawley RS (1999) Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res 27:3762–3769. doi:10.1093/nar/27.18.3762

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Brosh RM Jr (2007) Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLOS One 2:e1297. doi:10.1371/journal.pone.0001297

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Doherty KM, Brosh RM Jr (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337. doi:10.1042/BJ20060450

    Article  PubMed  CAS  Google Scholar 

  • Shen JC, Loeb LA (2000) The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet 16:213–220. doi:10.1016/S0168-9525(99)01970-8

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Loeb LA (2001) Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122:921–944. doi:10.1016/S0047-6374(01)00248-2

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto A, Nishikawa K, Kitao S, Furuichi Y (2000) Human RecQ5beta, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3alpha and 3beta. Nucleic Acids Res 28:1647–1655. doi:10.1093/nar/28.7.1647

    Article  PubMed  CAS  Google Scholar 

  • Sidorova JM, Nianzhen L, Folch A, Monnat RJ (2008) The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7:796–807

    PubMed  CAS  Google Scholar 

  • Siitonen HA, Kopra O, Kaariainen H, Haravuori H, Winter RM, Saamanen AM, Peltonen L, Kestila M (2003) Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12:2837–2844. doi:10.1093/hmg/ddg306

    Article  PubMed  CAS  Google Scholar 

  • Sowd G, Lei M, Opresko PL (2008) Mechanism and substrate specificity of telomeric protein POT1 stimulation of the Werner syndrome helicase. Nucleic Acids Res 36:4242–4256. doi:10.1093/nar/gkn385

    Article  PubMed  CAS  Google Scholar 

  • Stavropoulos DJ, Bradshaw PS, Li X, Pasic I, Truong K, Ikura M, Ungrin M, Meyn MS (2002) The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 11:3135–3144. doi:10.1093/hmg/11.25.3135

    Article  PubMed  CAS  Google Scholar 

  • Stinco G, Governatori G, Mattighello P, Patrone P (2008) Multiple cutaneous neoplasms in a patient with Rothmund–Thomson syndrome: case report and published work review. J Dermatol 35:154–161. doi:10.1111/j.1346-8138.2008.00436.x

    Article  PubMed  Google Scholar 

  • Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732. doi:10.1074/jbc.R300027200

    Article  PubMed  CAS  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–5508. doi:10.1093/emboj/17.18.5497

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, Schild D (2002) Recombinational DNA repair and human disease. Mutat Res 509:49–78. doi:10.1016/S0027-5107(02)00224-5

    PubMed  CAS  Google Scholar 

  • van Brabant AJ, Stan R, Ellis NA (2000) DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet 1:409–459. doi:10.1146/annurev.genom.1.1.409

    Article  PubMed  Google Scholar 

  • Van Maldergem L, Siitonen HA, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs EW, Cai J, Wang LL, Plon SE, Fourneau C, Kestila M, Gillerot Y, Megarbane A, Verloes A (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller–Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43:148–152. doi:10.1136/jmg.2005.031781

    Article  PubMed  CAS  Google Scholar 

  • Vennos EM, James WD (1995) Rothmund–Thomson syndrome. Dermatol Clin 13:143–150

    PubMed  CAS  Google Scholar 

  • Vennos EM, Collins M, James WD (1992) Rothmund–Thomson syndrome: review of the world literature. J Am Acad Dermatol 27:750–762. doi:10.1016/0190-9622(92)70249-F

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y, Enomoto T (2003) Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23:3527–3535. doi:10.1128/MCB.23.10.3527-3535.2003

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Erdmann N, Giannone RJ, Wu J, Gomez M, Liu Y (2005) An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci USA 102:10256–10260. doi:10.1073/pnas.0504635102

    Article  PubMed  CAS  Google Scholar 

  • Werner SR, Prahalad AK, Yang J, Hock JM (2006) RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund–Thomson syndrome. Biochem Biophys Res Commun 345:403–409. doi:10.1016/j.bbrc.2006.04.093

    Article  PubMed  CAS  Google Scholar 

  • West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445

    Article  PubMed  CAS  Google Scholar 

  • Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM (2006) The Rothmund–Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312:3443–3457. doi:10.1016/j.yexcr.2006.07.023

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874. doi:10.1038/nature02253

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Hickson ID (2006) DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 40:279–306. doi:10.1146/annurev.genet.40.110405.090636

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381. doi:10.1074/jbc.M009471200

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Bachrati CZ, Ou J, Xu C, Yin J, Chang M, Wang W, Li L, Brown GW, Hickson ID (2006) BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci USA 103:4068–4073. doi:10.1073/pnas.0508295103

    Article  PubMed  CAS  Google Scholar 

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RG, Kipling D (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24:16–17. doi:10.1038/71630

    Article  PubMed  CAS  Google Scholar 

  • Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    PubMed  CAS  Google Scholar 

  • Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund–Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13:2421–2430. doi:10.1093/hmg/ddh269

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W (2005) BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J 24:1465–1476. doi:10.1038/sj.emboj.7600622

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Wang X, Warren AJ, Legerski RJ, Nairn RS, Hamilton JW, Li L (2003) Nucleotide excision repair- and polymerase eta-mediated error-prone removal of mitomycin C interstrand cross-links. Mol Cell Biol 23:754–761. doi:10.1128/MCB.23.2.754-761.2003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Jian Lu and Avik K. Ghosh for critical reading of the manuscript. This work was in part supported by funds from the Intramural Program of the National Institute on Aging, NIH. This work was also in part supported by funds from the BK 21 Project in 2008 and KRF-2008-521-C00211 from KRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A. Bohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D.K., Ahn, B. & Bohr, V.A. Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10, 235–252 (2009). https://doi.org/10.1007/s10522-008-9205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9205-z

Keywords

Navigation