Abstract
This study investigated the effect of curcumin on aluminium-induced alterations in ageing-related parameters: lipid peroxidation, superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST), protein kinase C (PKC), Na+, K+-adenosine triphosphatase (Na+, K+-ATPase) and acetylcholinesterase (AChE) in the cerebral cortex and hippocampus of the brain of 10- and 24-month-old rats. Measurements taken from aluminium-fed rats were compared with those from rats in which curcumin and aluminium were co-administered. In aluminium-treated rats the levels of lipid peroxidation, PKC and AChE were enhanced while the activities of SOD, GPx, GST and Na+, K+-ATPase were significantly decreased in both the brain regions of both age-groups. In animals co-administered with curcumin and aluminium, the levels of lipid peroxidation, activities of PKC and AChE were significantly lowered while the activities of SOD, GPx, GST and Na+, K+-ATPase were significantly enhanced in the two brain regions studied indicating curcumin’s protective effects against aluminium toxicity. Though the magnitudes of curcumin-induced alterations varied in young and old animals, the results of the present study also demonstrated that curcumin exerts a protective effect against aluminium-induced elevation of ageing-related changes by modulating the extent of oxidative stress (by upregulating the activities of antioxidant enzymes) and by regulating the activities of Na+, K+ ATPase, PKC and AChE. Therefore, it is suggested that curcumin counters aluminium-induced enhancement in ageing-related processes.
Similar content being viewed by others
References
Aggarwal BB, Harikumar KB (2008) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neuro-degenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2008.06.010
Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G, Sandur SK et al (2006) Curcumin-biological and medicinal properties. Turmeric: the genus curcumin. Taylor & Francis, London, pp 279–368
Anane R, Bonini M, Grafeille J-M, Creppy EE (1995) Bioaccumulation of water soluble aluminium chloride in the hippocampus after transdermal uptake in mice. Arch Toxicol 69:568–571. doi:10.1007/s002040050214
Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE Jr, Awasthi YC, Ansari GAS (2000) Curcumin-glutathione interactions and the role of human glutathione s-tranferase P1-1. Chem Biol Interact 128:19–38. doi:10.1016/S0009-2797(00)00185-X
Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89. doi:10.1007/s10522-006-6495-x
Barcley LR, Vinqvist MR, Mukai K, Goto H, Hashimoto Y, Tokunaga A, Uno H (2000) On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org Lett 7:2841–2843. doi:10.1021/ol000173t
Bastianetto S, Brouillette J, Quirion R (2007) Neuroprotective effects of natural products: interaction with intracellular kinases, amyloid peptides and a possible role for transthyretin. Neurochem Res 32:1720–1725. doi:10.1007/s11064-007-9333-x
Battaini F, Pascale A (2005) Protein kinase C signal transduction regulation in physiological and pathological aging. Ann N Y Acad Sci 1057:177–192. doi:10.1196/annals.1356.011
Bolla KL, Briefil G, Spector D, Schwartz BS, Wieler L, Herron J, Gimnez L (1992) Neurocognitive effect of aluminium. Arch Neurol 49:1021–1026
Brichall JD, Chappell JS (1988) Aluminium, chemical physiology and Alzheimer’s disease. Lancet 2:1008–1010. doi:10.1016/S0140-6736(88)90754-4
Byus CV, Lundak RL, Fletcher RM, Adey WR (1984) Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulate microwave fields. Bioelectromagnetics 5:341–351. doi:10.1002/bem.2250050307
Calabrese V, Butterfield DA, Stella AM (2003) Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital J Biochem 52:177–181
Chainy GBN, Sahoo A, Swain C (1993) Effect of aluminium on lipid proxidation of cerebral hemisphere of chick. Bull Environ Contam Toxicol 50:85–91. doi:10.1007/BF00196545
Chakravarty AK, Yasmin H (2008) Free radical scavenging and nitric oxide synthase activation in murine lymphocytes and Erhlrich carcinoma cells treated with ethanolic extract of turmeric. Proc Nat Acad Sci India (Sec B) 78 Pt I:37–44
Crambert G, Fuzesi M, Garty H, Karlish S, Greeing K (2002) Phospholemman (FXYDI) associate with Na+, K+-ATPase and regulate its transport properties. Proc Natl Acad Sci USA 99:11476–11481. doi:10.1073/pnas.182267299
de Roberties E, de Lores arnaiz GR, Salganicoff L (1963) Isolation of synaptic vesicles and structural organization of acetylcholine system within brain nerve endings. J Neurochem 10:225–235. doi:10.1111/j.1471-4159.1963.tb05038.x
Deloncle R, Guillard O, Clanet F, Courois P, Piriou A (1990) Aluminium transfer as glutamate complex through blood brain barrier. Possible implication in dialysis encephalopathy. Biol Trace Elem Res 25:39–45
Deloncle R, Guillard O, Huguet F, Clanet F (1995) Modification of the blood brain barrier through chronic intoxication by aluminium glutamate: possible role. Biol Trace Elem Res 47:227–233. doi:10.1007/BF02790121
Deloncle R, Huguet F, Fernandez B, Quellard N, Babin PH, Guillard O (2001) Ultrastructural study of rat hippocampus after chronic administration of aluminium l-glutamate: an acceleration of the ageing process. Exp Gerontol 36:231–244. doi:10.1016/S0531-5565(00)00214-X
Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumatic activity of curcumin (diferuloylmethane). Indian J Med Res 71:601–608
Disterhoft JF, Oh MM (2006) Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol (Paris) 99:180–192. doi:10.1016/j.jphysparis.2005.12.079
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. doi:10.1016/0006-2952(61)90145-9
Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ (2003) Phospholemman, a single-span membrane protein, is an accessory protein of Na+, K+-ATPase in cerebellum and choroid plexus. J Neurosci 23:2161–2169
Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods of Enzymology. Academic Press, New York, pp 114–121
Florence AL, Gauthier A, Ward RJ, Crichton RR (1995) Influence of hydroxypyridones and desferrioxamine on the mobilization of aluminium from tissues of aluminium-loaded rats. Neurodegeneration 4:449–455. doi:10.1006/neur.1995.0054
Florrence AL, Gauthier A, Ponsar C, Van den Bosch de Aguilar P, Crichton RR (1994) An experimental animal model of aluminium overload. Neurodegeneration 3:315–323
Fordycee DE, Wehner JM (1993) Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiol Aging 14:309–317. doi:10.1016/0197-4580(93)90116-S
Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Herris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of a beta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005. doi:10.1016/S0197-4580(01)00300-1
Friedman E, Wang HY (1989) Effect of age on brain cortical protein kinase C and its mediation of 5-hydroxytryptamine release. J Neurochem 52:187–192. doi:10.1111/j.1471-4159.1989.tb10915.x
Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Cure cumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809. doi:10.1016/j.bcp.2007.08.016
Gomez M, Sanchez DJ, Llobet JM, Corbella J, Domingo JL (1997) Concentration of some essential elements in the brain of aluminium-exposed rats in relation to the age of exposure. Arch Gerontol Geriatr 24:287–294. doi:10.1016/S0167-4943(96)00766-2
Gong G-H, Wu Q, Huang X-N, Sun A-S, Shi J-S (2005) Protective effects og Ginko biloba leaf extract on aluminium-induced brain dysfunction in rats. Life Sci 77:140–148. doi:10.1016/j.lfs.2004.10.067
Gulya K, Rakonczay P, Kasa J (1990) Cholinotoxic effects of aluminium in rat brain. J Neurochem 54:1020–1026. doi:10.1111/j.1471-4159.1990.tb02352.x
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione s-transferases. J Biol Chem 249:7130–7139
Hetherington A, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145:67–71. doi:10.1016/0014-5793(82)81208-8
Igwe OJ, Filla MB (1995) Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience 69:1239–1251. doi:10.1016/0306-4522(95)00298-W
Jacqmin H, Commenges D, Latenneur L, Barberger-Gateau JF (1994) Component of drinking water and risk of cognitive impairment in the elderly. Am J Epidemiol 139:48–57
Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068. doi:10.1021/ja003823x
Julka D, Gill KD (1996) Altered calcium homeostasis: possible mechanisms of aluminium-induced neurotoxicity. Biochim Biophys Acta 17:47–54
Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P (2001) Protein kinase C activation promotes microtubule advance in neural growth cones by increasing average microtubule growth lifetimes. J Cell Biol 152:1033–1043. doi:10.1083/jcb.152.5.1033
Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Goncalves JF, Schetinger MRC (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminium on different mouse brain regions. J Inorg Biochem 99:1865–1870. doi:10.1016/j.jinorgbio.2005.06.015
Kalpana C, Menon VP (2004) Modulatory effect of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity. Pol J Pharmacol 56:581–586
Katsuyama H, Saijoh K, Inoue Y, Sumino K (1989) The interaction of aluminium with soluble protein kinase C from mouse brain. Arch Toxicol 63:474–478. doi:10.1007/BF00316451
Kaul S, Krishnakanth TP (1994) Effect of retinal deficiency and curcumin or turmeric feeding on brain Na+, K+-ATPase adenosine triphosphate activity. Mol Cell Biochem 137:101–107. doi:10.1007/BF00944071
Kaur J, Sharma D, Singh R (1998) Regional effects of ageing on Na+,K(+)- ATPase activity in rat brain and correlation with multiple unit action potentials and lipid peroxidation. Indian J Biochem Biophys 35(6):364–371
Kaur J, Sharma D, Singh R (2001) Acetyl-l-cranitine enhances Na+, K+ ATPase, glutathione-s-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 301:1–4. doi:10.1016/S0304-3940(01)01576-2
Kaur J, Singh S, Sharma D, Singh R (2003a) Aluminium-induced enhancement of ageing-related parameters in rat brain regions. Indian J Biochem Biophys 40:330–339
Kaur J, Singh S, Sharma D, Singh R (2003b) Neurostimualtory and antioxidative effects of l-deprenyl in aged rat brain regions. Biogerontology 4:105–111. doi:10.1023/A:1023351904840
Khare CP (2007) Indian medicinal plants—an illustrated dictionary. Springer, New Delhi, pp 286–287
Kubo T, Hagiwara Y (2005) Posterior hypothalamus cholinergic stimulation-induced activation of anterior hypothalamic area neurons is enhanced in spontaneously hypersensitive rats. Brain Res 1061:36–41. doi:10.1016/j.brainres.2005.08.054
Lal B, Gupta A, Murthy RC, Ali MM, Chanda SV (1993) Aluminum ingestion alters behavior and some neurochemicals in rats. Indian J Exp Biol 31:30–35
Laterra J, Bressler JP, Indurti RR, Belloni-Olivi L, Goldstein GW (1992) Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc Natl Acad Sci USA 89:10748–10752. doi:10.1073/pnas.89.22.10748
Logan-Smith MJ, Lockyer PJ, East JM, Lee AG (2001) Curcumin a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem 276:46905–469011. doi:10.1074/jbc.M108778200
Lowry OH, Rosenborough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in ageing. Neurobiol Aging 5:19–28. doi:10.1016/0197-4580(84)90081-2
Marklund S, Marklund G (1974) Involvement of the super oxide anion radical in the autooxidation of pyrogallol and convenient assay for super oxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x
Markovac J, Goldstein GW (1988) Picomolar concentration of lead stimulate brain protein kinase C. Nature 334:71–73
Martin-Aragno S, Benedi JM, Villar AM (1997) Modification of antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J Pharm Pharmacol 49:49–52
Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: role of neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57. doi:10.1016/S0166-2236(97)01188-0
Mc Dermott JR, Smith AI, Iqbal K, Wisniewski HM (1979) Brain aluminium in ageing and Alzheimer’s disease. Neurology 29:809–814
Mclaughlin AGI, Kazantis G, King E, Teare D, Porter RJ, Owen P (1962) Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminium dust. Br J Ind Med 19:253–263
Mukhopadhyay A, Basu N, Ghatak N, Gujral PK (1982) Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12:508–515. doi:10.1007/BF01965935
Nakamura S, Ishihara T (1989) Region selective increase in activities of CNS cholinergic marker enzymes during learning of memory task in aged rats. Pharmacol Biochem Behav 34:805–810. doi:10.1016/0091-3057(89)90278-5
Nehru B, Bhalla P (2006) Reversal of an aluminium-induced alteration in redox status in different regions of rat brain by administration of centrophenoxine. Mol Cell Biochem 290:185–191. doi:10.1007/s11010-006-9186-7
Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312. doi:10.1126/science.3014651
Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3
Osawa T, Kato Y (2005) Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 1043:440–451. doi:10.1196/annals.1333.050
Pascale A, Amadio M, Govoni S, Battaini F (2007) The aging brain, a key for the future: the protein kinase C involvement. Pharmacol Res 55:560–569. doi:10.1016/j.phrs.2007.04.013
Patil TN, Srinivasan M (1971) Hypocholesteremic effect of curcumin in induced-hypercholesteremic rats. Indian J Exp Biol 9:167–169
Paulraj R, Behari J (2004) Radio frequency radiation effects on protein kinase C activity in rats’ brain. Mutat Res 545:127–130. doi:10.1016/S0027-5107(03)00113-1
Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S (1998) Mechanism of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzyme in rat liver. Int J Biochem Cell Biol 30:445–456. doi:10.1016/S1357-2725(98)00015-6
Proven SD, Yokel RA (1992) Aluminium inhibits glutamate release from transverse rat hippocampal slices: role of G protein, Ca channels and protein kinase C. Neurotoxicology 13:1313–1420
Rajakumar DV, Rao MN (1994) Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates. Mol Cell Biochem 140:73–79. doi:10.1007/BF00928368
Rajkrishnan V, Vishwanathan P, Rajasekharan KN, Menon VP (1999) Neuroprotective role of curcumin from curcuma longa on ethanol—induced brain damage. Phytother Res 13:571–574. doi :10.1002/(SICI)1099-1573(199911)13:7<571::AID-PTR494>3.0.CO;2-7
Reddy S, Aggarwal BB (1994) Curcumin is a non-compititive and selective inhibitor of phosphorylase kinase. FEBS Lett 341:19–22. doi:10.1016/0014-5793(94)80232-7
Reddy A Ch and Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and oxidation of ferrous ions. Mol Cell Biochem 137:1–8. doi:10.1007/BF00926033
ReddyA Ch and Lokesh BR (1996) Effect of turmeric (Curcuma longa) on iron—induced lipid per oxidation in the rat liver. Food Chem Toxicol 32:279–283. doi:10.1016/0278-6915(94)90201-1
Redhead K, Quinlan GJ, Das RG, Gutteridge JM (1992) Aluminium-adjuvanted vaccines transiently increase aluminium levels in murine brain tissue. Pharmacol Toxicol 70:278–280
Rifat AL, Eastwood MR, Crapper-Mclachlan DR (1990) Effect of exposure of minors to aluminium powder. Lancet 336:1162–1165. doi:10.1016/0140-6736(90)92775-D
Rodella L, Rezzani R, Lanzi R, Bianchi R (2001) Chronic exposure to aluminium decreases NADPH-diaphorase positive neurons in the rat cerebral cortex. Brain Res 889:229–233. doi:10.1016/S0006-8993(00)03044-4
Roskans AJ, Cinnor JR (1990) Aluminium access to the brain: a role for transferrine and its receptors. Proc Natl Acad Sci USA 87:9024–9027. doi:10.1073/pnas.87.22.9024
Runyan JD, Moore AN, Dash PK (2005) A role of prefrontal calcium-sensitive protein phoaphatase and kinase activity in working memory. Learn Mem 12:103–110. doi:10.1101/lm.89405
Sarin S, Julka D, Gill KD (1997) Regional alteration in calcium homeostasis in the primate brain following chronic aluminium exposure. Mol Cell Biochem 168:95–100. doi:10.1023/A:1006891125762
Sethi P, Jyoti A, Singh R, Hussain E, Sharma D (2008) Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology. doi:10.1016/j.neuro.2008.08.005
Sharma D, Singh R (1995) Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats. Indian J Exp Biol 33:365–368
Sharma D, Maurya AK, Singh R (1993) Age-related decline in the multiple unit action potentials of CA3 neurons of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine. Neurobiol Aging 14:319–330. doi:10.1016/0197-4580(93)90117-T
Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148. doi:10.1007/978-0-387-46401-5_4
Sirvio J, Pitkanen A, Paakkonen A (1989) Brain cholinergic enzymes and cortical EEG activity in young and old rats. Comp Biochem Physiol 94:277–283
Sossin WS (2007) Isoform specificity of protein kinase Cs in synaptic plasticity. Learn Mem 14:236–246. doi:10.1101/lm.469707
Srimal RC, Dhawan BN (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452
Srinivasan M (1972) Effect of curcumin on blood sugar as seen in diabetic subject. Indian J Med Sci 26:269–270
Suarez-Fernandez MB, Soldado AB, Sanz-Medal A, Vega JA, Novelli A, Fernandez-Sanchez MT (1999) Aluminium- induced degeneration of astrocytes occur via apoptosis and results in neuronal death. Brain Res 835:125–136. doi:10.1016/S0006-8993(99)01536-X
Sun YM, Zhang HY, Chen DZ, Liu CB (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett 4:2909–29011. doi:10.1021/ol0262789
Surh YJ (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428:305–327. doi:10.1016/S1383-5742(99)00057-5
Tanaka Y, Ando S (1990) Synaptic ageing as revealed by changes in membrane potential and decreased activity of Na+, K+-ATPase. Brain Res 43:425–434
Ure JA, Perassolo M (2000) Update on the pathophysiology of the epilepsy. J Neurol Sci 177:1–17. doi:10.1016/S0022-510X(00)00356-7
Van der Zee EA, Palm IF, O’Connor M, Maizels ET, Hunzicket-Dunn M, Disterhoft JF (2004) Aging-related alterations in the distribution of Ca(2+)-dependent PKC isoforms in rabbit hippocampus. Hippocampus 14:849–860. doi:10.1002/hipo.20000
Van Rensberg SJ, Carstens ME, Potocnik FC, Van der Walt BJ, Taljaard JJ (1995) Transferrin C2 and Alzheimer’s disease: another piece of puzzle found? Med Hypotheses 44:268–272. doi:10.1016/0306-9877(95)90178-7
Van Rensberg SJ, Daniel WM, Potocnik FC, van Zyl JM, Taljaard JJ, Emsley RA (1997) A new model for the pathophysiology of Alzheimer’s disease. Aluminium toxicity is exacerbated by hydrogen peroxide and attenuated by an amyloid protein fragment and melatonin. S Afr Med J 87:1111–1115
Varner JA, Jensen KF, Harweth W, Issacson RL (1998) Chronic administration of aluminium-fluoride or sodium fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784:284–298. doi:10.1016/S0006-8993(97)01336-X
Walton JR (2006) Aluminium in hippcampal neurons from human with Alzheimer’s disease. Neurotoxicology 27:385–394. doi:10.1016/j.neuro.2005.11.007
Walton JR (2007) An aluminium-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Chem 101:1275–1284
Watanabe S, Fukui T (2000) Suppressive effect of curcumin on trichloroethane-induced oxidative stress. J Nutr Sci Vitaminaol Tokyo 46:230–234
Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317. doi:10.1016/j.expneurol.2005.09.004
Xu N, Majid V, Markesbery WR, Ehman WD (1992) Brain aluminium in Alzheimer’s disease using an improved GFAAS method. Neurotoxicology 13:735–744
Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, Rao MN, Tulis DA, Ren J, Sreejayan N (2006) Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26:85–90. doi:10.1161/01.ATV.0000191635.00744.b6
Zatta P, Favarato M, Nicolini M (1993) Deposition of aluminium in brain tissues of rats exposed to inhalation of aluminium acetylacetonate. Neuroreport 4:1119–1122. doi:10.1097/00001756-199308000-00015
Zatta P, Zambenedetti P, Bruna V, Filippi B (1994) Activation of acetylcholinesterase by aluminium (III): the relevance of the metal species. Neuroreport 5(14):1777–1780
Zhao Q, Slavkovich V, Zheng W (1998) Lead exposure promotes translocation of protein kinase C in rat choroids plexus in vitro, but not in vivo. Toxicol Appl Pharmacol 149:99–106. doi:10.1006/taap.1997.8352
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, D., Sethi, P., Hussain, E. et al. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 10, 489–502 (2009). https://doi.org/10.1007/s10522-008-9195-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10522-008-9195-x