Skip to main content
Log in

Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactate/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CR:

Caloric restriction

SDH:

Sorbitol dehydrogenase

AR:

Aldose reductase

ROS:

Reactive oxygen species

References

  • Balendiran GK, Rajkumar B (2005) Fibrates inhibit aldose reductase activity in the forward and reverse reactions. Biochem Pharmacol 70:1653–1663. doi:10.1016/j.bcp.2005.06.029

    Article  PubMed  CAS  Google Scholar 

  • Beutler H-O (1984) D-Sorbitol. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol VI. Verlag-Chemie GmbH, Weinheim, pp 356–360

    Google Scholar 

  • Chung SSM, Ho ECM, Lam KSL, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14:S233–S236. doi:10.1097/01.ASN.0000077408.15865.06

    Article  PubMed  CAS  Google Scholar 

  • Danh HC, Benedetti MS, Dostert P (1985) Age-related changes in sorbitol dehydrogenase activity of rat brain, liver, kidney and eye. J Pharm Pharmacol 37:910–912

    Google Scholar 

  • Dhahbi JM, Mote PL, Wingo J, Tillman JB, Walford RL, Spindler SR (1999) Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes. Am J Physiol 277:E352–E360

    PubMed  CAS  Google Scholar 

  • El-Kabbani O, Darmanin C, Chung RP-T (2004) Sorbitol dehydrogenase: structure, function and ligand design. Curr Med Chem 11:465–476. doi:10.2174/0929867043455927

    Article  PubMed  CAS  Google Scholar 

  • Engerman R, Kern TS, Larson ME (1994) Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 37:141–144. doi:10.1007/s001250050084

    Article  PubMed  CAS  Google Scholar 

  • Fujii J, Takahashi M, Hamaoka R, Kawasaki Y, Miyazawa N, Taniguchi N (1999) Physiological relevance of aldehyde reductase and aldose reductase gene expression. Adv Exp Med Biol 463:419–426

    PubMed  CAS  Google Scholar 

  • Gabbay KH (1973) The sorbitol pathway and the complications of diabetes. N Engl J Med 288:831–836

    PubMed  CAS  Google Scholar 

  • Gaynes BI, Watkins JBIII (1989) Comparison of glucose, sorbitol and fructose accumulation in lens and liver of diabetic and insulin-treated rats and mice. Comp Biochem Physiol 92B:685–690

    CAS  Google Scholar 

  • Gonzalez RG, Barnett P, Aguayo J, Cheng H-M, Chylack LT (1984) Direct measurement of polyol pathway activity in the ocular lens. Diabetes 33:196–199. doi:10.2337/diabetes.33.2.196

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Butt J, Munday MR (1991) Regulation of fatty acid synthesis in lactating rat mammary gland in the fed to starved transition: asynchronous control of pyruvate dehydrogenase, phosphofructokinase and acetyl-CoA carboxylase. Comp Biochem Physiol 100B:527–534

    CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2003a) Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolic concentrations in mice. Exp Gerontol 38:253–266. doi:10.1016/S0531-5565(02)00203-6

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2003b) Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver. Exp Gerontol 38:267–278. doi:10.1016/S0531-5565(02)00202-4

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2004) Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction. Exp Gerontol 39:1145–1154. doi:10.1016/j.exger.2004.04.009

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2005a) Fructose metabolizing enzymes form mouse liver: influence of age and caloric restriction. Biochim Biophys Acta 1721:37–43

    PubMed  CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2005b) Serine utilization in mouse liver: influence of caloric restriction and aging. FEBS Lett 579:2009–2013. doi:10.1016/j.febslet.2005.02.062

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2008) Enzymes of glycerol and glyceraldehydes metabolism in mouse liver: effects of caloric restriction and age on activities. Biosci Rep 28:107–115

    PubMed  CAS  Google Scholar 

  • Hoshi A, Takahashi M, Fujii J, Myint T, Kaneto H, Suzuki K, Yamasaki Y, Kamada T, Taniguchi N (1996) Glycation and inactivation of sorbitol dehydrogenase in normal and diabetic rats. Biochem J 318:119–123

    PubMed  CAS  Google Scholar 

  • Iwata N, Inazu N, Satoh T (1990) The purification and properties of aldose reductase from rat ovary. Arch Biochem Biophys 282:70–77. doi:10.1016/0003-9861(90)90088-G

    Article  PubMed  CAS  Google Scholar 

  • Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192. doi:10.1016/j.freeradbiomed.2005.06.018

    Article  PubMed  CAS  Google Scholar 

  • Jeffery J, Jörnvall H (1988) Sorbitol dehydrogenase. Adv Enzymol Relat Areas Mol Biol 61:47–106. doi:10.1002/9780470123072.ch2

    Article  PubMed  CAS  Google Scholar 

  • Kador PF, Robinson WJ, Kinoshita JH (1985) The pharmacology of aldose reducatse inhibitors. Annu Rev Pharmacol Toxicol 25:691–714. doi:10.1146/annurev.pa.25.040185.003355

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita JH, Futterman S, Satoh K, Merola LO (1963) Factors affecting the formation of sugar alcohols in ocular lens. Biochim Biophys Acta 74:340–350. doi:10.1016/0006-3002(63)91377-5

    Article  PubMed  CAS  Google Scholar 

  • Krebs HA (1967) The redox state of nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Adv Enz Regul 5:409–437. doi:10.1016/0065-2571(67)90029-5

    Article  CAS  Google Scholar 

  • Krebs HA, Veech RL (1969) Pyridine nucleotide interrelations. In: Papa S, Tager JM, Quagliariello E, Slater EC (eds) The energy level and metabolic control in mitochondria. Adriatica Editrice, Bari, pp 329–379

    Google Scholar 

  • Lee S-M, Schade SZ, Doughty CC (1985) Aldose reductase, NADPH and NADP+ in normal, galactose-fed and diabetic rat lens. Biochim Biophys Acta 841:247–253

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Creissen GP (1997) Glutathione reductase: regulation and role in oxidative stress. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Plainville, pp 667–713

    Google Scholar 

  • Pugh TD, Klopp RG, Weindruch R (1999) Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging 20:157–165. doi:10.1016/S0197-4580(99)00043-3

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 288:2579–2588. doi:10.1001/jama.288.20.2579

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63. doi:10.1126/science.273.5271.59

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392. doi:10.1210/er.2004-0028

    Article  PubMed  CAS  Google Scholar 

  • Tilton R, Chang K, Nyengaard JR, Enden MV, Ido Y, Williamson JR (1995) Inhibition of sorbitol dehydrogenase. Effects of vascular and neuronal dysfunction in streptozotocin-induced diabetic rats. Diabetes 44:234–242. doi:10.2337/diabetes.44.2.234

    Article  PubMed  CAS  Google Scholar 

  • Ugochukwa NH, Figgers CL (2006) Modultaion of the flux patterns in carbohydrate metabolism in the livers of streptozoticin-induced diabetic rats by dietary caloric restriction. Pharmacol Res 54:172–180. doi:10.1016/j.phrs.2006.04.004

    Article  Google Scholar 

  • Veech RL, Eggleston LV, Krebs HA (1969) The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J 115:609–619

    PubMed  CAS  Google Scholar 

  • Weindruch R, Sohal RS (1997) Caloric intake and aging. N Engl J Med 337:986–994. doi:10.1056/NEJM199710023371407

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas Publisher, Springfield

    Google Scholar 

Download references

Acknowledgment

The work was supported by the National Institutes of Health grants PO1 AG11915 and RO1 AG028125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevork Hagopian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagopian, K., Ramsey, J.J. & Weindruch, R. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver. Biogerontology 10, 471–479 (2009). https://doi.org/10.1007/s10522-008-9191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9191-1

Keywords

Navigation