Theoretical estimation of maximum human lifespan

Abstract

The existence of maximum human lifespan remains a puzzle in aging research. Maximum human lifespan is believed to be around 125 years, whereas current demographic trends seem to show no limitation. To reconcile this contrast, the estimation of maximum human lifespan requires an adequate mathematical model. However, sparse data of available old-age mortality pattern make the estimation impossible. Here we suggest an extended Weibull model for the estimation using a proper mathematical method based on survival probability pattern. We find a tendency that survival probability is maximized in modern human survival curves. Based on such tendency, we develop an estimation method for maximum human lifespan and indeed obtain about 126 years from periodic life tables for Swedish female between 1950 and 2005. Despite uncertainty from available mortality data, our approach may offer quantitative biodemographic opportunities linking aging and survival kinetics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abbott A (2004) Aging: growing old gracefully. Nature 428:116–118. doi:10.1038/428116a

    PubMed  Article  CAS  Google Scholar 

  2. Allman J, McLaughlin T, Hakeem A (1993) Brain weight and life-span in primate species. Proc Natl Acad Sci USA 90:118–122. doi:10.1073/pnas.90.1.118

    PubMed  Article  CAS  Google Scholar 

  3. Carnes BA, Olshansky SJ, Grahn D (2003) Biological evidence for limits to the duration of life. Biogerontology 4:31–45. doi:10.1023/A:1022425317536

    PubMed  Article  Google Scholar 

  4. Cohen JE (2004) Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol 2:2017–2023

    CAS  Google Scholar 

  5. Couzin J (2005) How much can human life span be extended? Science 309:83. doi:10.1126/science.309.5731.83

    PubMed  Article  CAS  Google Scholar 

  6. Crimmins EM, Finch CE (2005) Infection, inflammation, height, and longevity. Proc Natl Acad Sci USA 103:498–503. doi:10.1073/pnas.0501470103

    PubMed  Article  Google Scholar 

  7. Cutler RC (1975) Evolution of human longevity and the genetic complexity governing aging rate. Proc Natl Acad Sci USA 72:4664–4668. doi:10.1073/pnas.72.11.4664

    PubMed  Article  CAS  Google Scholar 

  8. Finch CE, Pike MC (1996) Maximum life span predictions from the Gompertz mortality model. J Gerontol A Biol Sci Med Sci 51:B183–B194

    PubMed  CAS  Google Scholar 

  9. Gavrilov LA, Gavrilova NS (1991) The biology of life span. A quantitative approach. Harwood Academic, New York

    Google Scholar 

  10. Gavrilov LA, Gavrilova NS (2001) The reliability theory of aging and longevity. J Theor Biol 213:527–545. doi:10.1006/jtbi.2001.2430

    PubMed  Article  CAS  Google Scholar 

  11. Gompertz B (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos Trans R Soc Lond A 115:513–585. doi:10.1098/rstl.1825.0026

    Article  Google Scholar 

  12. Hayflick L (2000) The future of aging. Nature 408:267–269. doi:10.1038/35041709

    PubMed  Article  CAS  Google Scholar 

  13. Hayflick L (2004) Aging: The reality, “anti-aging” is an oxymoron. J Gerontol A Biol Sci Med Sci 59:B573–B578

    PubMed  Google Scholar 

  14. Helfand SL, Inouye SK (2002) Rejuvenating views of the aging process. Nat Rev Genet 3:149–153. doi:10.1038/nrg726

    PubMed  Article  CAS  Google Scholar 

  15. Kannisto V (1994) Development of oldest-old mortality, 1950–1990: evidence from 28 developed countries. Odense monographs on population aging 1. Odense University Press, Odense

    Google Scholar 

  16. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447. doi:10.1016/j.cell.2005.01.027

    PubMed  Article  CAS  Google Scholar 

  17. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238. doi:10.1038/35041682

    PubMed  Article  CAS  Google Scholar 

  18. Lucke JC, Hall W (2005) Who wants to live forever? EMBO Rep 6:98–102. doi:10.1038/sj.embor.7400339

    PubMed  Article  CAS  Google Scholar 

  19. Oeppen J, Vaupel JW (2002) Broken limits to life expectancy. Science 296:1029–1031. doi:10.1126/science.1069675

    PubMed  Article  CAS  Google Scholar 

  20. Olshansky SJ, Carnes BA, Désesquelles A (2001) Demography: prospects for human longevity. Science 291:1491–1492. doi:10.1126/science.291.5508.1491

    PubMed  Article  CAS  Google Scholar 

  21. Olshansky SJ, Passaro DJ, Hershow RC et al (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138–1145. doi:10.1056/NEJMsr043743

    PubMed  Article  CAS  Google Scholar 

  22. Partridge B, Hall W (2007) The search for Methuselah: Should we endeavour to increase the maximum human lifespan? EMBO Rep 8:888–891. doi:10.1038/sj.embor.7401069

    PubMed  Article  CAS  Google Scholar 

  23. Robine JM, Allard M (1998) The oldest human. Science 279:1834–1835. doi:10.1126/science.279.5358.1831h

    PubMed  Article  CAS  Google Scholar 

  24. Robine JM, Vaupel JW (2002) Emergence of supercentenarians in low mortality countries. N Am Actuarial J 6:54–63

    Google Scholar 

  25. Takahashi Y, Kuro-o M, Ishikawa F (2000) Aging mechanisms. Proc Natl Acad Sci USA 97:12407–12408. doi:10.1073/pnas.210382097

    PubMed  Article  CAS  Google Scholar 

  26. Thatcher AR, Kannisto V, Vaupel JW (1998) The force of mortality at ages 80–120. Odense monographs on population aging 5. Odense University Press, Odense

    Google Scholar 

  27. Vaupel JW, Carey JR, Christensen K et al (1998) Biodemographic trajectories of longevity. Science 280:855–860. doi:10.1126/science.280.5365.855

    PubMed  Article  CAS  Google Scholar 

  28. Vaupel JW, Carey JR, Christensen K (2003) Aging: it’s never too late. Science 301:1679–1681. doi:10.1126/science.1090529

    PubMed  Article  CAS  Google Scholar 

  29. Wachter KW, Finch C (eds) (1997) Between Zeus and the Salmon: the biodemography of longevity. National Academic Press, Washington DC

    Google Scholar 

  30. Weitz JS, Fraser HB (2001) Explaining mortality rate plateaus. Proc Natl Acad Sci USA 98:15383–15386. doi:10.1073/pnas.261228098

    PubMed  Article  CAS  Google Scholar 

  31. Weibull WA (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  32. Weon BM, Lee JL, Je JH (2005) A unified decay formula for luminescence decays. J Appl Phys 98:096101. doi:10.1063/1.2126120

    Article  Google Scholar 

  33. Weon BM, Je JH, Lee JL (2007) Lifetime dispersion in a single quantum dot. Appl Phys A 89:1029–1031. doi:10.1007/s00339-007-4239-7

    Article  CAS  Google Scholar 

  34. Wilmoth JR, Deegan LJ, Lundstom H, Horiuchi S (2000) Increase of maximum life-span in Sweden, 1861–1999. Science 289:2366–2368. doi:10.1126/science.289.5488.2366

    PubMed  Article  CAS  Google Scholar 

  35. Yashin AI, Iachine I (1995) How long can humans live? Lower bound for biological limit of human longevity calculated from the Danish twin data using correlated frailty model. Mech Ageing Dev 80:147–169. doi:10.1016/0047-6374(94)01567-6

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Human Mortality Database (http://www.mortality.org) for allowing anyone to access the demographic data for research. This work was supported by the Creative Research Initiatives (Functional X-ray Imaging) of MOST/KOSEF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung Ho Je.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weon, B.M., Je, J.H. Theoretical estimation of maximum human lifespan. Biogerontology 10, 65–71 (2009). https://doi.org/10.1007/s10522-008-9156-4

Download citation

Keywords

  • Human aging
  • Extended Weibull model
  • Maximum human lifespan