Skip to main content
Log in

Vitamin D receptor levels and binding are reduced in aged rat intestinal subcellular fractions

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The hormonal form of vitamin D, 1α,25(OH)2-vitaminD3 [1α,25(OH)2D3], stimulates signal transduction pathways in intestinal cells. To gain insight into the relative importance of the vitamin D receptor (VDR) in the rapid hormone responses, the amounts and localization of the VDR were evaluated in young (3 months) and aged (24 months) rat intestinal cells. Immune-fluorescence and Western blot studies showed that VDR levels are diminished in aged enterocytes. Confocal microscopy assays revealed that the VDR and other immune-reactive proteins have mitochondrial, membrane, cytosol and perinuclear localization. Western blot analysis using specific antibodies detected the 60 and 50 kDa bands expected for the VDR in the cytosol and microsomes and, to a lesser extent, in the nucleus and mitochondria. Low molecular weight immune-reactive proteins were also detected in young enterocytes subcellular fractions. Since changes in hormone receptor levels appear to constitute a common manifestation of the ageing process, we also analyzed 1α,25(OH)2D3 binding properties and VDR levels in subcellular fractions from young and aged rats. In competition binding assays, employing [3H]-1α,25(OH)2D3 and 1α,25(OH)2D3, we have detected specific binding in all subcellular fractions, with maximum binding in mitochondrial and nuclear fractions. Both, VDR protein levels and 1α,25(OH)2D3 binding, were diminished with ageing. Age-related declines in VDR may have important consequences for correct receptor/effector coupling in the duodenal tissues and may explain age-related declines in the hormonal regulation of signal transduction pathways that we previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JS, Chen H, Gacad M, Encinas C, Ren S, Nguyen L, Wu S, Hewison M, Barsony J (2004) Response element binding proteins and intracellular vitamin D binding proteins: novel regulators of vitamin D trafficking, action and metabolism. J Steroid Biochem Mol Biol 89–90:461–465

    Article  PubMed  CAS  Google Scholar 

  • Armbrecht HJ, Forte LR, Halloran BP (1984) Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D and PTH. Am J Physiol 245:E266–E270

    Google Scholar 

  • Baker AR, McDonnell DP, Hughes MR, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’ Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85:3294–3298

    Article  PubMed  CAS  Google Scholar 

  • Barsony J, Renyi I, Mc Koy W (1997) Subcellular distribution of normal and mutan vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem 272:5774–5782

    Article  PubMed  CAS  Google Scholar 

  • Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. (1995) Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 114:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brumbaugh PF, Haussler MR (1975) Specific binding of 1,25 dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem 250:1588–1594

    PubMed  CAS  Google Scholar 

  • Buitrago C, Vazquez G, De Boland AR, Boland R (2001) The vitamin D receptor mediates rapid changes in muscle protein tyrosine phosphorylation induced by 1,25(OH)2D3. Biochem Biophys Res Commun 289:1150–1156

    Article  PubMed  CAS  Google Scholar 

  • Burmester JK, Maeda N, Deluca HF (1988) Isolation and expression of rat 1, 25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci USA 85(4):1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Caffrey JM, Farach-Carson MC (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J Biol Chem 264:20265–20274

    PubMed  CAS  Google Scholar 

  • Civitelli R, Kim YS, Gunsten SL, Fujimori A, Huskey M, Avioli LV, Hruska KA (1990) Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells. Endocrinology 127:2253–2262

    Article  PubMed  CAS  Google Scholar 

  • de Boland AR, Nemere I, Norman AW (1990) Ca2+-channel agonist BAY K8644 mimics 1,25(OH)2-vitamin D3 rapid enhancement of Ca2+ transport in chick perfused duodenum. Biochem Biophys Res Commun 166:217–222

    Article  PubMed  Google Scholar 

  • Ebeling PR, Sandgren ME, DiMagno EP, Lane AW, DeLuca HF, Riggs BL (1992) Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women J Clin Endocrinol Metab 75:176–182

    Article  PubMed  CAS  Google Scholar 

  • Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, Möller G, Adamski J, Balling R (2002) Deletion of deoxyribonucleic acid binding domain of vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 16:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Gniadecki R (1996) Activation of Raf-mitogen-activated protein kinase signaling pathway by 1,25-dihydroxyvitamin D3 in normal human keratinocytes. J Invest Dermatol 106:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • González Pardo V, Russo de Boland A (2004) Tyrosine phosphorylation signalling dependent on 1α,25(OH)2-vitamin D3 in rat intestinal cells: effect of ageing. Int J Biochem Cell Biol 36:489–504

    Article  CAS  Google Scholar 

  • González Pardo V, Facchinetti MM, Curino A, Boland R, Russo de Boland A (2007) Age-related alteration of 1α,25(OH)2-vitamin D3-dependent activation of p38 MAPK in rat intestinal cells. Biogerontology 8:13–24

    Article  CAS  Google Scholar 

  • Halloran BP, Portale AA (2005) Vitamin D metabolism and aging. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D. Elsevier Academic Press, San Diego, pp 823–838

    Google Scholar 

  • Huhtakangas J, Oliviera CJ, Bishop JE, Zanello LP, Norman AW (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2 vitamin D3 in vivo and in vitro. Mol Endocrinol 18:2660–2671

    Article  PubMed  CAS  Google Scholar 

  • Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the Vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord 2:203–216

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larsson B, Nemere I (2003) Effect of growth and maturation on membrane-initiated actions of 1,25-dihydroxyvitamin D(3). I. Calcium transport, receptor kinetics, and signal transduction in intestine of male chickens. Endocrinology 144:1726–1735

    Article  PubMed  CAS  Google Scholar 

  • Le Mellay V, Grosse B, Lieberherr M (1997) Phospholipase Cβ and membrane action of calcitriol and estradiol. J Biol Chem 272:11902–11907

    Article  PubMed  CAS  Google Scholar 

  • Liang CT, Barnes J, Imanaka S, DeLuca HF (1994) Alterations in mRNA expression of duodenal 1,25-dihydroxyvitamin D3 receptor and vitamin D-dependent calcium binding protein in aged Wistar rats. Exp Gerontol 2:179–186

    Article  Google Scholar 

  • Linbäk B, Berlin T, Björkhem I (1987) Three commercial kits and one liquid-chromatographic method evaluated for determining 25-hydroxyvitaminD3 in serum. Clin Chem 33/7:1226–1227

    Google Scholar 

  • Lu Z, Hanson K, DeLuca HF (1967) Cloning and origin of the two forms of chicken vitamin D receptor. Arch Biochem Biophys 339:99–106

    Article  Google Scholar 

  • Massheimer V, Boland R, de Boland AR (1994) Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydropyridine-sensitive cAMP-dependent pathway. Cell Signal 6:299–304

    Article  PubMed  CAS  Google Scholar 

  • Massheimer V, Picotto G, de Boland AR, Boland RL (1995) Ageing alters the rapid stimulation of cAMP-dependent calcium uptake by 1,25-dihydroxy-vitamin D3 in rat intestinal cells. Endocrinol Metab 2:157–163

    CAS  Google Scholar 

  • Nemere I, Yoshimoto Y, Norman AW (1984) Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology 115:1476–1483

    PubMed  CAS  Google Scholar 

  • Minghetti PP, Norman AW (1988) 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J 2:3043–3053

    PubMed  CAS  Google Scholar 

  • Nemere I, Dormanes MC, Hammond MW, Okamura WH, Norman AW (1994) Identification of a specific binding protein for 1α,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J Biol Chem 269:23750–23756

    PubMed  CAS  Google Scholar 

  • Nemere I, Farach-Carson MC, Rohe B, Sterling MT, Norman AW, Boyan BD, Safford SE (2004) Ribozime knockdown functionally links 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. PNAS 101:7392–7397

    Article  PubMed  CAS  Google Scholar 

  • NIH (1996) Guide for the care and use of laboratory animals, 7th edn. National Academy Press, Washington, aka National Research Council Guide

  • Norman AW (1998) Receptors for 1α,25(OH)2D3: past, present, and future. J Bone Miner Res 13:1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Norman AW, Nemere I, Zhou L-X, Bishop JE, Lowe KE, Maiyar AC, Collins ED, Taoka T, Sergeev Y, Farach-Carson MC (1992) 1,25(OH)2-vitamin D3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. J Steroid Biochem Mol Biol 41:231–240

    Article  PubMed  CAS  Google Scholar 

  • Revelli A, Massobrio M, Tesarik J (1998) Nongenomic effects of 1α,25-dihydroxyvitamin D3. Trends Endocrinol Metab 9:419–427

    Article  CAS  PubMed  Google Scholar 

  • Slovik DM, Adams JS, Neer RM, Holick MF, Potts JT Jr (1981) Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 305:372–374

    Article  PubMed  CAS  Google Scholar 

  • Song X, Bishop JE, Okamura WH, Norman AW (1998) Stimulation of phosphorylation of mitogen-activated protein kinase by 1alpha,25-dihydroxyvitamin D3 in promyelocytic NB4 leukemia cells: a structure-function study. Endocrinology 139:457–465

    Article  PubMed  CAS  Google Scholar 

  • Strom M, Sandgren ME, Brown TA, DeLuca HF (1989) 1,25-Dihydroxyvitamin D3 up-regulates 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA 24:9770–9773

    Article  Google Scholar 

  • Takamoto S, Seino Y, Sacktor B, Liang CT (1990) Effect of age on duodenal 1,25-dihydroxyvitamin D3 receptors in Wistar rats. Biochim Biophys Acta 1034:22–28

    PubMed  CAS  Google Scholar 

  • Wada L, Daly R, Kern D, Halloran B (1992) Kinetics of 1,25-dihydroxyvitamin D metabolism in the aging rat. Am J Physiol 262:E906–E910

    PubMed  CAS  Google Scholar 

  • Wecksler WR, Norman AW (1979) An hydroxylapatite bath assay for the quantification of 1,25-dihydroxyvitamin D3-recetor complexes. Anal Biochem 92:314–323

    Article  PubMed  CAS  Google Scholar 

  • Weiser MM (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem 248(7):2536–2541

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Russo de Boland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Pardo, V., Boland, R. & de Boland, A.R. Vitamin D receptor levels and binding are reduced in aged rat intestinal subcellular fractions. Biogerontology 9, 109–118 (2008). https://doi.org/10.1007/s10522-007-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9118-2

Keywords

Navigation