Abstract
The hormonal form of vitamin D, 1α,25(OH)2-vitaminD3 [1α,25(OH)2D3], stimulates signal transduction pathways in intestinal cells. To gain insight into the relative importance of the vitamin D receptor (VDR) in the rapid hormone responses, the amounts and localization of the VDR were evaluated in young (3 months) and aged (24 months) rat intestinal cells. Immune-fluorescence and Western blot studies showed that VDR levels are diminished in aged enterocytes. Confocal microscopy assays revealed that the VDR and other immune-reactive proteins have mitochondrial, membrane, cytosol and perinuclear localization. Western blot analysis using specific antibodies detected the 60 and 50 kDa bands expected for the VDR in the cytosol and microsomes and, to a lesser extent, in the nucleus and mitochondria. Low molecular weight immune-reactive proteins were also detected in young enterocytes subcellular fractions. Since changes in hormone receptor levels appear to constitute a common manifestation of the ageing process, we also analyzed 1α,25(OH)2D3 binding properties and VDR levels in subcellular fractions from young and aged rats. In competition binding assays, employing [3H]-1α,25(OH)2D3 and 1α,25(OH)2D3, we have detected specific binding in all subcellular fractions, with maximum binding in mitochondrial and nuclear fractions. Both, VDR protein levels and 1α,25(OH)2D3 binding, were diminished with ageing. Age-related declines in VDR may have important consequences for correct receptor/effector coupling in the duodenal tissues and may explain age-related declines in the hormonal regulation of signal transduction pathways that we previously reported.
Similar content being viewed by others
References
Adams JS, Chen H, Gacad M, Encinas C, Ren S, Nguyen L, Wu S, Hewison M, Barsony J (2004) Response element binding proteins and intracellular vitamin D binding proteins: novel regulators of vitamin D trafficking, action and metabolism. J Steroid Biochem Mol Biol 89–90:461–465
Armbrecht HJ, Forte LR, Halloran BP (1984) Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D and PTH. Am J Physiol 245:E266–E270
Baker AR, McDonnell DP, Hughes MR, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’ Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85:3294–3298
Barsony J, Renyi I, Mc Koy W (1997) Subcellular distribution of normal and mutan vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem 272:5774–5782
Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. (1995) Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 114:1–8
Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Brumbaugh PF, Haussler MR (1975) Specific binding of 1,25 dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem 250:1588–1594
Buitrago C, Vazquez G, De Boland AR, Boland R (2001) The vitamin D receptor mediates rapid changes in muscle protein tyrosine phosphorylation induced by 1,25(OH)2D3. Biochem Biophys Res Commun 289:1150–1156
Burmester JK, Maeda N, Deluca HF (1988) Isolation and expression of rat 1, 25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci USA 85(4):1005–1009
Caffrey JM, Farach-Carson MC (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J Biol Chem 264:20265–20274
Civitelli R, Kim YS, Gunsten SL, Fujimori A, Huskey M, Avioli LV, Hruska KA (1990) Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells. Endocrinology 127:2253–2262
de Boland AR, Nemere I, Norman AW (1990) Ca2+-channel agonist BAY K8644 mimics 1,25(OH)2-vitamin D3 rapid enhancement of Ca2+ transport in chick perfused duodenum. Biochem Biophys Res Commun 166:217–222
Ebeling PR, Sandgren ME, DiMagno EP, Lane AW, DeLuca HF, Riggs BL (1992) Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women J Clin Endocrinol Metab 75:176–182
Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, Möller G, Adamski J, Balling R (2002) Deletion of deoxyribonucleic acid binding domain of vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 16:1524–1537
Gniadecki R (1996) Activation of Raf-mitogen-activated protein kinase signaling pathway by 1,25-dihydroxyvitamin D3 in normal human keratinocytes. J Invest Dermatol 106:1212–1217
González Pardo V, Russo de Boland A (2004) Tyrosine phosphorylation signalling dependent on 1α,25(OH)2-vitamin D3 in rat intestinal cells: effect of ageing. Int J Biochem Cell Biol 36:489–504
González Pardo V, Facchinetti MM, Curino A, Boland R, Russo de Boland A (2007) Age-related alteration of 1α,25(OH)2-vitamin D3-dependent activation of p38 MAPK in rat intestinal cells. Biogerontology 8:13–24
Halloran BP, Portale AA (2005) Vitamin D metabolism and aging. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D. Elsevier Academic Press, San Diego, pp 823–838
Huhtakangas J, Oliviera CJ, Bishop JE, Zanello LP, Norman AW (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2 vitamin D3 in vivo and in vitro. Mol Endocrinol 18:2660–2671
Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the Vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord 2:203–216
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Larsson B, Nemere I (2003) Effect of growth and maturation on membrane-initiated actions of 1,25-dihydroxyvitamin D(3). I. Calcium transport, receptor kinetics, and signal transduction in intestine of male chickens. Endocrinology 144:1726–1735
Le Mellay V, Grosse B, Lieberherr M (1997) Phospholipase Cβ and membrane action of calcitriol and estradiol. J Biol Chem 272:11902–11907
Liang CT, Barnes J, Imanaka S, DeLuca HF (1994) Alterations in mRNA expression of duodenal 1,25-dihydroxyvitamin D3 receptor and vitamin D-dependent calcium binding protein in aged Wistar rats. Exp Gerontol 2:179–186
Linbäk B, Berlin T, Björkhem I (1987) Three commercial kits and one liquid-chromatographic method evaluated for determining 25-hydroxyvitaminD3 in serum. Clin Chem 33/7:1226–1227
Lu Z, Hanson K, DeLuca HF (1967) Cloning and origin of the two forms of chicken vitamin D receptor. Arch Biochem Biophys 339:99–106
Massheimer V, Boland R, de Boland AR (1994) Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydropyridine-sensitive cAMP-dependent pathway. Cell Signal 6:299–304
Massheimer V, Picotto G, de Boland AR, Boland RL (1995) Ageing alters the rapid stimulation of cAMP-dependent calcium uptake by 1,25-dihydroxy-vitamin D3 in rat intestinal cells. Endocrinol Metab 2:157–163
Nemere I, Yoshimoto Y, Norman AW (1984) Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology 115:1476–1483
Minghetti PP, Norman AW (1988) 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J 2:3043–3053
Nemere I, Dormanes MC, Hammond MW, Okamura WH, Norman AW (1994) Identification of a specific binding protein for 1α,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J Biol Chem 269:23750–23756
Nemere I, Farach-Carson MC, Rohe B, Sterling MT, Norman AW, Boyan BD, Safford SE (2004) Ribozime knockdown functionally links 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells. PNAS 101:7392–7397
NIH (1996) Guide for the care and use of laboratory animals, 7th edn. National Academy Press, Washington, aka National Research Council Guide
Norman AW (1998) Receptors for 1α,25(OH)2D3: past, present, and future. J Bone Miner Res 13:1360–1369
Norman AW, Nemere I, Zhou L-X, Bishop JE, Lowe KE, Maiyar AC, Collins ED, Taoka T, Sergeev Y, Farach-Carson MC (1992) 1,25(OH)2-vitamin D3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. J Steroid Biochem Mol Biol 41:231–240
Revelli A, Massobrio M, Tesarik J (1998) Nongenomic effects of 1α,25-dihydroxyvitamin D3. Trends Endocrinol Metab 9:419–427
Slovik DM, Adams JS, Neer RM, Holick MF, Potts JT Jr (1981) Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. N Engl J Med 305:372–374
Song X, Bishop JE, Okamura WH, Norman AW (1998) Stimulation of phosphorylation of mitogen-activated protein kinase by 1alpha,25-dihydroxyvitamin D3 in promyelocytic NB4 leukemia cells: a structure-function study. Endocrinology 139:457–465
Strom M, Sandgren ME, Brown TA, DeLuca HF (1989) 1,25-Dihydroxyvitamin D3 up-regulates 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA 24:9770–9773
Takamoto S, Seino Y, Sacktor B, Liang CT (1990) Effect of age on duodenal 1,25-dihydroxyvitamin D3 receptors in Wistar rats. Biochim Biophys Acta 1034:22–28
Wada L, Daly R, Kern D, Halloran B (1992) Kinetics of 1,25-dihydroxyvitamin D metabolism in the aging rat. Am J Physiol 262:E906–E910
Wecksler WR, Norman AW (1979) An hydroxylapatite bath assay for the quantification of 1,25-dihydroxyvitamin D3-recetor complexes. Anal Biochem 92:314–323
Weiser MM (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem 248(7):2536–2541
Acknowledgements
This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur, Argentina.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
González Pardo, V., Boland, R. & de Boland, A.R. Vitamin D receptor levels and binding are reduced in aged rat intestinal subcellular fractions. Biogerontology 9, 109–118 (2008). https://doi.org/10.1007/s10522-007-9118-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10522-007-9118-2