Skip to main content


Log in

Homocysteine induces DNA damage and alterations in proliferative capacity of T-lymphocytes: a model for immunosenescence?

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript


Homocysteine (Hcy) appears to exert different effects on immune functions possibly contributing to age-related pathological states, including vascular diseases, immune dysfunction, and Alzheimer’s disease. However, molecular mechanisms underlying Hcy toxicity need to be better characterized. Since T cells are a suitable model to address the possible role of replicative senescence during the in vivo aging, we investigated the effects of high Hcy concentrations on mitogen-activated lymphocytes, with regard to evaluation of DNA damage and cell cycle alterations. Cultured human peripheral blood lymphocytes were stimulated with mitogenic concanavalin A (5 μg/ml) for 48 h in the presence or absence of Hcy (1 mM). Both flow cytometric analysis and caspase-3 activity assay showed an increased rate of apoptosis in Hcy-treated lymphocyte cultures compared to controls. Further, Hcy exposure caused DNA fragmentation as evaluated by single cell gel electrophoresis showing the occurrence of comets. Cytokinesis-block micronucleus assay, performed after addition of cytochalasin B (5 μg/ml) and incubation up to 72 h, revealed a significantly higher frequency of micronucleated/binucleated cells in Hcy-treated cultures compared to controls (P < 0.001). Hcy also reduced cyclin B expression in comparison to control cultures, while cyclin D levels were not significantly affected. Cell cycle alterations, such as the inability of cells to enter into mitosis, could be related with DNA damage. These findings provided a link between perturbation of lymphocyte proliferation homeostasis and commitment towards apoptosis. Our results suggest the involvement of Hcy in the altered immune function associated with age and disease pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


Con A:

Concanavalin A




Human peripheral blood lymphocytes




Propidium iodide


  • Barnett YA, Barnett CR (1998) DNA damage and mutation: contributors to the age-related alterations in T cell-mediated immune responses? Mech Ageing Dev 102(2–3):165–175

    Article  PubMed  CAS  Google Scholar 

  • Bartels PC, Schoorl M, Peetoom JJ (2003) Effect of nutrient supplementation on serum homocysteine, iron and proteins in psychogeriatric patients. Clin Lab 49(1–2):29–34

    PubMed  CAS  Google Scholar 

  • Boldyrev AA, Carpenter DO, Johnson P (2005) Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J Neurochem 95:913–918

    Article  PubMed  CAS  Google Scholar 

  • Caccamo D, Condello S, Gorgone G et al (2004) Screening for C677T and A1298C MTHFR polymorphisms in patients with epilepsy and risk of hyperhomocysteinemia. Neuromol Med 6:117–126

    Article  CAS  Google Scholar 

  • Dawson H, Collins G, Pyle R et al (2004) The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mech Ageing Dev 125(2):107–110

    Article  PubMed  CAS  Google Scholar 

  • De Martinis M, Franceschi C, Monti D, Ginaldi L (2005) Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 579:2035

    Article  PubMed  CAS  Google Scholar 

  • Effros RB, Dagarag M, Valenzuela HF (2003) In vitro senescence of immune cells. Exp Gerontol 38:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (1999) Micronucleus frequency in human lymphocytes is related to plasma vitamin B12 and homocysteine. Mutat Res 428:299–304

    PubMed  CAS  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA et al (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204

    Article  PubMed  CAS  Google Scholar 

  • Geisel J, Hubner U, Bodis M et al (2003) The role of genetic factors in the development of hyperhomocysteinemia. Clin Chem Lab Med 41:1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Gortz P, Hoinkes A, Fleischer W et al (2004) Implications for hyperhomocysteinemia: not homocysteine but its oxidized forms strongly inhibit neuronal network activity. J Neurol Sci 218:109–114

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6020–6926

    Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A et al (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22:1752–1762

    PubMed  CAS  Google Scholar 

  • Lehmann M, Gottfries CG, Regland B (1999) Identification of cognitive impairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord 10:12–20

    Article  PubMed  CAS  Google Scholar 

  • Loft S, Poulsen HE (2000) Antioxidant intervention studies related to DNA damage, DNA repair and gene expression. Free Radic Res 33(Suppl):S67–S83

    PubMed  CAS  Google Scholar 

  • Lombardi G, Dianzani C, Miglio G et al (2001) Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol 133:936–944

    Article  PubMed  CAS  Google Scholar 

  • Mangiagalli A, Samuele A, Armentero MT et al (2004) Effects of homocysteine on apoptosis-related proteins and anti-oxidant systems in isolated human lymphocytes. Eur J Biochem 271:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2003) Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med 139:441–444

    PubMed  CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. TINS 26:137–146

    PubMed  CAS  Google Scholar 

  • Mattson MP, Kruman II, Duan W (2002) Folic acid and homocysteine in age-related disease. Ageing Res Rev 1:95–111

    Article  PubMed  CAS  Google Scholar 

  • Mujumdar VS, Aru GM, Tyagi SC (2001) Induction of oxidative stress by homocysteine impairs endothelial function. J Cell Biochem 82:491–500

    Article  PubMed  CAS  Google Scholar 

  • Nilsson K, Gustafson L, Hultberg B (2006) Plasma homocysteine and vascular disease in psychogeriatric patients. Dement Geriatr Cogn Disord 21:148–154

    Article  PubMed  CAS  Google Scholar 

  • Oikawa S, Murakami K, Kawanishi S (2003) Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene 22:3530–3538

    Article  PubMed  CAS  Google Scholar 

  • Pacheco R, Ciruela F, Casado V et al (2004) Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation. J Biol Chem 279:33352–33358

    Article  PubMed  CAS  Google Scholar 

  • Schroecksnadel K, Frick B, Wirleitner C et al (2004) Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 5:107–118

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Jacques PF, Bostom AG et al (2000) Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev 28:117–145

    PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  • Szeto YT, Benzie IF (2002) Effects of dietary antioxidants on human DNA ex vivo. Free Radic Res 36:113–118

    Article  PubMed  CAS  Google Scholar 

  • Tagliari B, Zamin LL, Salbego CG, Netto CA, Wyse AT (2006) Hyperhomocysteinemia increases damage on brain slices exposed to in vitro model of oxygen and glucose deprivation: prevention by folic acid. Int J Dev Neurosci 24:285–291

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Strauss GH (1995) The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells Suppl 1:207–214

    Google Scholar 

  • Ulrey CL, Liu L, Andrews LG et al (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14(Suppl 1):R139–R147

    Article  PubMed  CAS  Google Scholar 

  • van Raamt AF, Kalmijn S, Mali WP, van Zandvoort MJ, van der Graaf Y, SMART Study Group (2006) Homocysteine level and cognitive function in patients with arterial disease: the second manifestations of ARTerial Disease Study. J Am Geriatr Soc 54(4):575–579

    Article  PubMed  Google Scholar 

  • Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243:167–190

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Cai Y, Adachi MT et al (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276:35867–35874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Riccardo Ientile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picerno, I., Chirico, C., Condello, S. et al. Homocysteine induces DNA damage and alterations in proliferative capacity of T-lymphocytes: a model for immunosenescence?. Biogerontology 8, 111–119 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: