Skip to main content

Advertisement

Log in

Protective effects of Glycyrrhiza uralensis Fisch. on the cognitive deficits caused by β-amyloid peptide 25–35 in young mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Amyloid β protein (Aβ) may be involved in the progression of Alzheimer’s disease (AD), by acting as a neurotoxin and eliciting oxidative stress. This study was designed to determine the effects of Glycyrrhiza uralensis Fisch. water extract (GWE) on the cognitive deficits and oxidative stress induced by the administration of Aβ25–35 in mice. Mice in two of the four animal groups were fed an experimental diet containing either 0.5 or 1% GWE for the entire 6-week experimental period. Control mice and a further experimental group were fed a non-GWE diet. Aβ25–35 was administered to the three experimental groups by intracerebroventricular (i.c.v.) injection (10 µg/10 µl/mouse) once per week in weeks 5 and 6 of the experimental period. Behavioral changes were assessed using both a passive avoidance (after the injection of Aβ25–35 in week 5) and the Morris water-maze tests (after the injection of Aβ25–35 in week 6). Control animals were administered vehicle alone. The prolonged consumption of a diet containing GWE ameliorated the cognitive deficits caused by the i.c.v. injections of Aβ25–35. Treatment with Aβ25–35 led to higher concentrations of thiobarbituric acid reactive substances in the brain, and GWE attenuated this response. There was a decrease in catalase activity in the group provided with 1% GWE. Acetylcholinesterase activity was significantly reduced in the brains of all GWE-treated animals compared to that in the non-GWE-fed experimental group. These results suggest that GWE exerts a protective effect against the cognitive impairments often observed in AD, and that in mice this effect is mediated by antioxidant actions against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GWE:

Water extract of Glycyrrhiza uralensis Fisch

Aβ:

Amyloid β protein

i.c.v.:

Intracerebroventricular

AD:

Alzheimer’s disease

PBS:

Phosphate-buffered saline

TBARS:

Thiobarbituric acid reactive substances

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

AchE:

Acetylcholinesterase

MOA:

Monoamine oxidase

References

  • Abei H (1974) Catalase: methods of enzymatic analysis. Academic Press, Bergmeyer HU, NY

    Google Scholar 

  • Ahlemeyer B, Krieglstein J (2003) Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry 36:S8–S14

    Article  PubMed  CAS  Google Scholar 

  • Akcay YD, Yalcin A, Sozmen EY (2005) The effect of melatonin on lipid peroxidation and nitrite/nitrate levels, and on superoxide dismutase and catalase activities in kainic acid-induced injury. Cell Mol Biol Lett 10:321–329

    PubMed  CAS  Google Scholar 

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  • Behl C (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res 290:471–480

    Article  PubMed  CAS  Google Scholar 

  • Behl C (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 57:301–323

    Article  PubMed  CAS  Google Scholar 

  • Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16:661–674

    Article  PubMed  CAS  Google Scholar 

  • Benzi G, Pastoris O, Marzatico F, Villa RF (1989) Cerebral enzyme antioxidant system. Influence of aging and phosphatidylcholine. J Cereb Blood Flow Metab 9:373–380

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1997) Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 9:257–266

    Article  PubMed  Google Scholar 

  • Bradley PR (1992) British herbal compendium. British Herbal Medicine Association, Dorset, England

    Google Scholar 

  • Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Age Dev 122:945–962

    Article  CAS  Google Scholar 

  • Carrillo MC, Kanai S, Sato Y, Kitani K (1992) Age-related changes in antioxidant enzyme activities are region and organ, as well as sex, selective in the rat. Mech Age Dev 65:187–198

    Article  CAS  Google Scholar 

  • Chang HM, But PPH (1986) Pharmacology and applications of Chinese materia medica. World Scientific, Hong Kong

    Google Scholar 

  • Danh HC, Benedetti MS, Dostert P (1983) Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. J Neurochem 40:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Daniels WM, van Rensburg SJ, van Zyl JM, Taljaard JJ (1998) Melatonin prevents beta-amyloid-induced lipid peroxidation. J Pineal Res 24:78–82

    Article  PubMed  CAS  Google Scholar 

  • Dhingra D, Parle M, Kulkarni SK (2004) Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 91:361–365

    Article  PubMed  Google Scholar 

  • Doraiswamy PM (2002) Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs 16:811–824

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Ho IK (1969) Triton solubilized acetylcholinesterase of brain. J Neurochem 16:1505–1513

    Article  PubMed  Google Scholar 

  • Flood JF, Morley JE, Roberts E (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease. Proc Natl Acad Sci USA 88:3363–3336

    Article  PubMed  CAS  Google Scholar 

  • Foster S, Chongxi Y (1992) Herbal emissaries: bringing Chinese herbs to the west. Healing Arts Press, Vermont, pp 112–121

    Google Scholar 

  • Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255:728–730

    Article  PubMed  CAS  Google Scholar 

  • Hikino H (1985) Recent research on oriental medicinal plants. In: Wagner H, Hikino H, Farnsworth NR (eds) Economic and medicinal plant research. Academic Press, London, pp 53–61

    Google Scholar 

  • Hirohata M, Ono K, Naiki H, Yamada M (2005) Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Neuropharmacology 49:1088–1099

    Article  PubMed  CAS  Google Scholar 

  • Hsu HY, Chen YP, Shen SJ, Hsu CS, Chen CC, Chang HC (1986) Oriental materia medica: a concise guide. Oriental Healing Arts Institute, Long Beach, Canada, pp 55–57

    Google Scholar 

  • Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, Kim J, Kim EH (2005) Melatonin attenuates amyloid beta25–35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett 380:26–31

    Article  PubMed  CAS  Google Scholar 

  • Joseph JA, Denisova NA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, Morgan D (2003) Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci 6:153–162

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Nakamura R, Ichiki H, Kubo M (2003) Antitussive principles of Glycyrrhizae radix, a main component of the Kampo preparations Bakumondo-to (Mai-men-dong-tang). Eur J Pharmacol 469:159–163

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Master CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Byun SH, Yang CH, Kim CY, Kim JW, Kim SG (2004) Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage). Toxicology 197:239–251

    Article  PubMed  CAS  Google Scholar 

  • Laursen SE, Belknap JK (1986) Intracerebroventricular injection in mice. Some methodological refinements. J␣Pharmacol Methods 16:355–357

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146

    Article  PubMed  CAS  Google Scholar 

  • Marklund SL, Oreland L, Perdahl E, Winblad B (1983) Superoxide dismutase activity in brains from chronic alcoholics. Drug Alcohol Depend 12:209–215

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down’s syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima T, Nitta A (1994) Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174:241–249

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Kikuichi S, Yoshioka S, Tsubaki M, Fujii Y, Matsuda H, Kubo M, Irimajiri K (2003) Induction of apoptosis in HL-60 cells treated with medicinal herbs. Am J Chin Med 31:551–562

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Park SE, Kim ND, Yoo YH (2004) Acetylcholinesterase plays a pivotal role in apoptosome formation. Cancer Res 64:2652–2655

    Article  PubMed  CAS  Google Scholar 

  • Pitchumoni SS, Doraiswamy PM (1998) Current status of antioxidant therapy for Alzheimer’s disease. J Am Geriatr Soc 46:1566–1572

    PubMed  CAS  Google Scholar 

  • Quintanilla RA, Munoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA, Inestrosa NC (2005) Trolox and 17beta-estradiol protect against amyloid beta-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J Biol Chem 280:11615–11625

    Article  PubMed  CAS  Google Scholar 

  • Rao G, Xia E, Richardson A (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Age Dev 53:49–60

    Article  CAS  Google Scholar 

  • Rappaport F, Fischl J, Pinto N (1959) An improved method for the estimation of cholinesterase activity in serum. Clin Chim Acta 4:227–230

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Kondradi C, Shay V, Kienzl E, Birkmayer G, Danielczyk W, Sofic E, Youdim MB (1986) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of l-deprenyl. Adv Neurol 45:111–118

    Google Scholar 

  • Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT (1998) A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 50:136–145

    PubMed  CAS  Google Scholar 

  • Rosler M, Anand R, Cicin-Sain A, Gauthier S, Agid Y, Dal-Bianco P, Stahelin HB, Hartman R, Gharabawi M (1999) Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. Br Med J 318:633–640

    CAS  Google Scholar 

  • Sawada M, Sester U, Carlson JC (1992) Superoxide radical formation and associated biochemical alterations in the plasma membrane of brain, heart and liver during the lifetime of the rat. J Cell Biochem 48:296–304

    Article  PubMed  CAS  Google Scholar 

  • Schneider LS (1998) New therapeutic approaches to cognitive impairment. J Clin Psychiat 59:8–13

    CAS  Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, Maurya AK, Singh R (1993) Age-related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine. Neurobiol Aging 14:319–330

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochem Biophys Acta 26:139–144

    Google Scholar 

  • Strolin Benedetti M, Cini M, Fusi R, Marrari P, Dostert P (1990) The effects of aging on MAO activity and amino acid levels in rat brain. J Neural Transm Suppl 29:259–268

    PubMed  CAS  Google Scholar 

  • Takahashi T, Takasuka N, Iigo M, Baba M, Nishino H, Tsuda H, Okuyama T (2004) Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci 95:448–453

    Article  PubMed  CAS  Google Scholar 

  • Tang SY, Whiteman M, Peng ZF, Jenner A, Yong EL, Halliwell B (2004) Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional Chinese medicines. Free Radic Biol Med 36:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Vanella A, Geremia E, D’Urso G, Tiriolo P, Di Silvestro I, Grimaldi R, Pinturo R (1982) Superoxide dismutase activities in aging rat brain. Gerontology 28:108–113

    Article  PubMed  CAS  Google Scholar 

  • Varadarajan S, Yatin S, Akesenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  PubMed  CAS  Google Scholar 

  • Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89–96

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932

    Article  PubMed  CAS  Google Scholar 

  • Yatin SM, Aksenov M, Butterfield DA (1999) The antioxidant vitamin E modulates amyloid beta- peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochem Res 24:427–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, J., Um, M., Choi, W. et al. Protective effects of Glycyrrhiza uralensis Fisch. on the cognitive deficits caused by β-amyloid peptide 25–35 in young mice. Biogerontology 7, 239–247 (2006). https://doi.org/10.1007/s10522-006-9023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9023-0

Keywords

Navigation