Skip to main content
Log in

The dietary restriction effect in C. elegans and humans: is the worm a one-millimeter human?

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Dietary restriction (DR) lengthens life span in wide range of vertebrate and invertebrate species. The molecular mechanism by which DR increases life span and the universality of its effects (and hence its applicability to humans) are currently debated in gerontology. This article addresses these two problems from both an experimental perspective, using the nematode C. elegans as a model system, and a theoretical viewpoint, by appealing to recent mechanistic and evolutionary models of aging. Molecular mechanisms of aging are analysed by contrasting the rate of living/oxidative stress hypothesis with the metabolic stability/longevity hypothesis, a new model of aging which postulates that the robustness of metabolic networks, rather than metabolic rate per se, is the major determinant of aging. Studies of food-restricted worms are shown to be consistent with the metabolic stability/longevity hypothesis. The universality of the effects of DR is addressed in terms of directionality theory, an evolutionary model, which is based on the analytical fact that the robustness or the stability of demographic networks determines Darwinian fitness. Directionality theory, in conjunction with the metabolic stability hypothesis, predicts that DR will have negligible effects on equilibrium species (late age of sexual maturity, small size of progeny sets and broad reproductive span) and large effects on opportunistic species (early age of maturity, large size of progeny sets, narrow reproductive span). Empirical studies using C. elegans (an opportunistic species) and computational studies on human populations (an equilibrium species) are shown to be consistent with these predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR (2003) ‘Chapter 5. Energy metabolism, anti-oxidant defense and aging in Caenorthabditis elegans’ in Topics in Current Genetics. In: T. Nyström, HD Osiewacz (eds) Model Systems in Ageing. vol. 3. Springer, Berlin Heidelberg. pp 99–144

  • Butov A, Johnson T, Cypser J, Sannikov I, Volkov M, Sehl M, Yashin A (2001) Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels. Exp Gerontol 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Demetrius L (1997) Directionality principles in thermodynamics and evolution. Proc Natl Acad Sci USA 94:3491–3498

    Google Scholar 

  • Demetrius L (2004) Caloric restriction, metabolic rate, and entropy. J Gerontol Biol Sci 95A: 902–915

    Google Scholar 

  • Demetrius L (2005) Of mice and men. EMBO Rep 6: S39–S44

    Article  PubMed  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Fei YJ, Inoue K, Ganapathy V (2003) Structural and functional characteristics of two sodium-coupled dicarboxylate transporters [ceNaDC1 and ceNaDC2] from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278:6136–6144

    Article  PubMed  CAS  Google Scholar 

  • Fei YJ, Liu JC, Inoue K, Zhuang L, Miyake L, Miyauchi S, Ganapathy V (2004) Relevance of NAC-2, a Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem J 379:191–198

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Fisher (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12:12–45

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory of free radical and radiation chemistry. J Gerontol 11:298–302

    PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2004a) Extending life-span in C. elegans. Science 305:1238–1239

    Article  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002a) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37:1371–1378

    Article  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002b) No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37:1359–1369

    Article  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Vanfleteren JR (2005) DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism. Neurobiol Aging 26:689–696

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Vanfleteren JR (2004b) The hunt for the record life span in Caenorhabditis elegans. J␣Gerontol A Biol Sci Med Sci 59:408–410

    Google Scholar 

  • Jazwinski SM (2000) Metabolic mechanisms of yeast ageing. Exp Gerontol 35:671–676

    Article  PubMed  CAS  Google Scholar 

  • Jia K, Chen D, Riddle D (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, de Castro E, de Castro SH, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1607–1617

    Article  Google Scholar 

  • Johnson T, Friedman DB, Foltz N, Fitzpatrick PA, Shoemaker JE (1990) Genetic variants and mutations of Caenorhabditis elegans provide tools for dissecting the aging process. In: Harrison D (ed) Genetic effects of aging, vol II. Telford, Caldwell, NJ, pp 101–126

    Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–29

    Article  PubMed  CAS  Google Scholar 

  • Kowald A, Demetrius L (2005) Directionality theory: a computational study of an entropic principle in evolutionary processes. Proc R Soc B Biol Sci 272:741–749

    Article  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Lane M, Mattison J, Roth G, Brant L, Ingram D (2004) Effects of long-term diet restriction on aging and longevity in primates remain uncertain. J Gerontol A Biol Sci Med Sci 59:405–407

    PubMed  Google Scholar 

  • Lewis SE, Goldspink DF, Phillips JG, Merry BJ, Holehan AM (1985) The effects of aging and chronic dietary restriction on whole body growth and protein turnover in the rat. Exp Gerontol 20:253–263

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3(e223):1–7

    Article  CAS  Google Scholar 

  • Masoro EJ (1998) Hormesis and the antiaging action of dietary restriction. Exp Gerontol 33:61–66

    Article  PubMed  CAS  Google Scholar 

  • Meissner B, Boll M, Daniel H, Baumeister R (2004) Deletion of the intestinal peptide transporter affects insulin and Tor signaling in Caenorhabditis elegans. J Biol Chem 279:36739–36745

    Article  PubMed  CAS  Google Scholar 

  • Miwa S, Riyahi K, Partridge L, Brand MD (2004) Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann N Y Acad Sci 1019:388–391

    Article  PubMed  CAS  Google Scholar 

  • Nehrke K (2003) A reduction in intestinal cell pHi due to loss of the Caenorhabditis elegans Na+/H+ exchanger NHX-2 increases life span. J Biol Chem 278:44657–44666

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:79–85

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Barton NH (1993) Optimality, mutation and the evolution of aging. Nature 362:305–311

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Piper MDW, Mair W (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126:938–950

    Article  PubMed  CAS  Google Scholar 

  • Pearl R (1928) The Rate of Living. Knopf, New York

  • Phelan JP, Rose MR (2005) Why dietary restriction substantially increases longevity in animal models but won’t in humans. Ageing Res Rev 4:339–350

    Article  PubMed  CAS  Google Scholar 

  • Selman C, Phillips T, Staib JL, Duncan JS, Leeuwenburgh C, Speakman JR (2005) Energy expenditure of calorically restricted rats is higher than predicted from their altered body composition. Mech Ageing Dev 126:783–793

    Article  PubMed  Google Scholar 

  • Shanley DP, Kirkwood TB (2000) Calorie restriction and aging: a life-history analysis. Evolution 54:740–750

    Google Scholar 

  • Sohal RS, Weindruch R (1966) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  Google Scholar 

  • Turturro A, Hass B, Hart RW (1998) Hormesis – Implications for risk assessment caloric intake (body weight) as an example. Hum Exp Toxicol 17:454–459

    Article  PubMed  CAS  Google Scholar 

  • Vanfleteren JR, Braeckman BP (1999) Mechanisms of life span determination in Caenorhabditis elegans. Neurobiol Aging 20:487–502

    Article  PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs A, Orosz L, Muller F (2003) Influence of TOR kinase on lifespan in C.␣elegans. Nature 426:620

    Article  PubMed  CAS  Google Scholar 

  • Williams GS (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Ziehe M, Demetrius L (2005) Directionality theory: an empirical study of an entropic principle in life-history evolution. Proc R Soc B Biol Sci 272:1185–1194

    Article  Google Scholar 

Download references

Acknowledgements

BPB and JRV are supported by the Fund for Scientific Research-Flanders (G.0025.06) and the European Community (LSHM-CT-20004-512020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart P. Braeckman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeckman, B.P., Demetrius, L. & Vanfleteren, J.R. The dietary restriction effect in C. elegans and humans: is the worm a one-millimeter human?. Biogerontology 7, 127–133 (2006). https://doi.org/10.1007/s10522-006-9003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9003-4

Keywords

Navigation