Skip to main content

The Boulder Workshop Question Box

Abstract

The International Statistical Genetics Workshop (commonly referred to as the “Boulder Workshop”) has been held annually in Boulder, Colorado almost every year since 1990. A staple feature of each workshop has been the presence of a “question box” (either a physical box or an online virtual one) where workshop participants are given the opportunity of asking questions to the faculty. In this manuscript, we have compiled a list of ten “classic” questions that have appeared in one form or another across multiple workshops and our attempts at answering them.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66(1):279–292

    PubMed  Article  Google Scholar 

  2. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101

    PubMed  Article  Google Scholar 

  3. Aschard H, Vilhjalmsson BJ, Joshi AD, Price AL, Kraft P (2015) Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am J Hum Genet 96(2):329–339

    PubMed  PubMed Central  Article  Google Scholar 

  4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    PubMed  Article  Google Scholar 

  5. Blitzstein JK, Hwang J (2014) Introduction to probability. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  6. Bollen K (1989) Structural equations with latent variables. Wiley, New York

    Book  Google Scholar 

  7. Bollen KA, Bauldry S (2010) Model identification and computer algebra. Sociol Methods Res 39(2):127–156

    PubMed  PubMed Central  Article  Google Scholar 

  8. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, Patterson N, Daly MJ, Price AL, Neale BM (2015a) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295

    Article  Google Scholar 

  9. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, ReproGen C, Psychiatric Genomics C, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control C, Duncan L, Perry JR, Patterson N, Robinson EB, Daly MJ, Price AL, Neale BM (2015b) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241

    Article  Google Scholar 

  10. Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608

    PubMed  PubMed Central  Article  Google Scholar 

  11. Carey G (2005) Cholesky problems. Behav Genet 35(5):653–665

    PubMed  Article  Google Scholar 

  12. de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11(4):e1004219

    PubMed  PubMed Central  Article  Google Scholar 

  13. Dominicus A, Skrondal A, Gjessing HK, Pedersen NL, Palmgren J (2006) Likelihood ratio tests in behavioral genetics: problems and solutions. Behav Genet 36(2):331–340

    PubMed  Article  PubMed Central  Google Scholar 

  14. Evans DM, Gillespie NA, Martin NG (2002) Biometrical genetics. Biol Psychol 61(1–2):33–51

    PubMed  Article  Google Scholar 

  15. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Pearson Education, Harlow, Essex

    Google Scholar 

  16. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, Ip HF, Marioni RE, McIntosh AM, Deary IJ, Koellinger PD, Harden KP, Nivard MG, Tucker-Drob EM (2019) Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat Hum Behav 3(5):513–525

    PubMed  PubMed Central  Article  Google Scholar 

  17. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

    PubMed  PubMed Central  Article  Google Scholar 

  18. Kendler KS, Eaves LJ (1986) Models for the joint effect of genotype and environment on liability to psychiatric illness. Am J Psychiatry 143(3):279–289

    PubMed  Article  Google Scholar 

  19. Kirkwood BR, Sterne JAC (2003) Essential medical statistics. Blackwell, Oxford

    Google Scholar 

  20. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  21. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    PubMed  PubMed Central  Article  Google Scholar 

  22. Martin NG, Eaves LJ (1977) The genetical analysis of covariance structure. Heredity (Edinb) 38(1):79–95

    Article  Google Scholar 

  23. Medland SE, Zayats T, Glaser B, Nyholt DR, Gordon SD, Wright MJ, Montgomery GW, Campbell MJ, Henders AK, Timpson NJ, Peltonen L, Wolke D, Ring SM, Deloukas P, Martin NG, Smith GD, Evans DM (2010) A variant in LIN28B is associated with 2D:4D finger-length ratio, a putative retrospective biomarker of prenatal testosterone exposure. Am J Hum Genet 86(4):519–525

    PubMed  PubMed Central  Article  Google Scholar 

  24. Munafo MR, Tilling K, Taylor AE, Evans DM, Davey Smith G (2018) Collider scope: when selection bias can substantially influence observed associations. Int J Epidemiol 47(1):226–235

    PubMed  Article  Google Scholar 

  25. Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Springer, Dordrecht

    Book  Google Scholar 

  26. Neale B, Ferreira MA, Medland SE, Posthuma D (2008) Statistical genetics: gene mapping through linkage and association. Taylor and Francis, New York

    Google Scholar 

  27. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7(3):e1001322

    PubMed  PubMed Central  Article  Google Scholar 

  28. Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, Estabrook R, Bates TC, Maes HH, Boker SM (2016) OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 81(2):535–549

    PubMed  Article  PubMed Central  Google Scholar 

  29. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ, Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, Northstone K, Ring SM, Rubin C, Sims MA, Song K, Strachan DP, Vollenweider P, Waeber G, Waterworth DM, Wong A, Deloukas P, Barroso I, Mooser V, Loos RJ, Wareham NJ (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41(6):729–733

    PubMed  PubMed Central  Article  Google Scholar 

  30. Purcell S (2002) Variance components models for gene-environment interaction in twin analysis. Twin Res 5(6):554–571

    PubMed  Article  PubMed Central  Google Scholar 

  31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    PubMed  PubMed Central  Article  Google Scholar 

  32. Sham P (1998) Statistics in human genetics. Wiley, Chichester

    Google Scholar 

  33. Smith GD, Ebrahim S (2003) 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22

    PubMed  Article  PubMed Central  Google Scholar 

  34. Thomas DC, Lawlor DA, Thompson JR (2007) Re: Estimation of bias in nongenetic observational studies using "Mendelian triangulation" by Bautista et al. Ann Epidemiol 17(7):511–513

    PubMed  Article  Google Scholar 

  35. Verhulst B, Neale MC (2016) Minor allele frequency changes the nature of genotype by environment interactions. Behav Genet 46(5):726–733

    PubMed  PubMed Central  Article  Google Scholar 

  36. Verhulst B, Prom-Wormley E, Keller M, Medland S, Neale MC (2019) Type I error rates and parameter bias in multivariate behavioral genetic models. Behav Genet 49(1):99–111

    PubMed  Article  PubMed Central  Google Scholar 

  37. Wang M, Xu S (2019) Statistics of Mendelian segregation—a mixture model. J Anim Breed Genet 136(5):341–350

    PubMed  Article  Google Scholar 

  38. Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8(1):1826

    PubMed  Article  Google Scholar 

  39. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Diabetes Genetics I, Wellcome Trust Case Control C, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH, Cambridge GEMC, Zhao JH, Li S, Loos RJ, Barroso I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40(5):575–583

    Article  Google Scholar 

  40. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191

    PubMed  PubMed Central  Article  Google Scholar 

  41. Wu H, Neale MC (2013) On the likelihood ratio tests in bivariate ACDE models. Psychometrika 78(3):441–463

    PubMed  Article  Google Scholar 

  42. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88(1):76–82

    PubMed  PubMed Central  Article  Google Scholar 

  43. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, Robinson MR, Perry JR, Nolte IM, van Vliet-Ostaptchouk JV, Snieder H, LifeLines Cohort S, Esko T, Milani L, Magi R, Metspalu A, Hamsten A, Magnusson PK, Pedersen NL, Ingelsson E, Soranzo N, Keller MC, Wray NR, Goddard ME, Visscher PM (2015) Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet 47(10):1114–1120

    PubMed  PubMed Central  Article  Google Scholar 

  44. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, Hemani G, Tansey K, Laurin C, Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium, Pourcain BS, Warrington NM, Finucane HK, Price AL, Bulik-Sullivan BK, Anttila V, Paternoster L, Gaunt TR, Evans DM, Neale BM (2017) LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33(2):272–279

    PubMed  Article  Google Scholar 

  45. Zollner S, Pritchard JK (2007) Overcoming the winner's curse: estimating penetrance parameters from case-control data. Am J Hum Genet 80(4):605–615

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Daniel Hwang, Tom Bond, John Kemp, Gunn-Helen Moen, Geng Wang and two anonymous reviewers for useful suggestions on the manuscript. D.M.E. is supported by an Australian National Health and Medical Research Council Senior Research Fellowship (1137714).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David M. Evans.

Ethics declarations

Conflict of interest

David M Evans declares he has no conflicts of interest.

Human and animal rights and informed consent

This article did not include research with human or animal subjects and informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Elizabeth Prom-Wormley.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evans, D.M. The Boulder Workshop Question Box. Behav Genet 51, 181–190 (2021). https://doi.org/10.1007/s10519-020-10022-y

Download citation

Keywords

  • Classical twin study
  • Structural equation modelling
  • Genome-wide association
  • Mendelian randomization