The Gene CG6767 Affects Olfactory Behavior in Drosophila melanogaster

  • Elizabeth B. Brown
  • Emily Rayens
  • Stephanie M. RollmannEmail author
Original Research


Chemosensory systems mediate some of the most vital animal behaviors. However, our knowledge of the genetic mechanisms that underlie behavioral responses to olfactory cues remains fragmented. Genome-wide association mapping has greatly advanced our ability to identify candidate loci associated with variation in olfactory behavior, but functional validation of these candidates remain a necessary next step in understanding the mechanisms by which these genes influence chemoreception. In previous genome-wide association analyses, a genomic region that spans multiple polymorphic loci on the left arm of the third chromosome was found to be significantly associated with variation in olfactory behavioral responses to the odorant 2,3-butanedione, a volatile compound present in fermenting fruit. In this study, behavioral analysis of flies possessing either the major or minor haplotype for this region confirmed the association between polymorphisms in the region and variation in olfactory behavior. Moreover, functional dissection of the genes within this region using P-element insertional mutagenesis together with targeted RNAi experiments revealed that the gene CG6767, a gene of previously unknown function but predicted to encode an enzyme responsible for the synthesis and metabolism of nucleic acids, affects olfactory behavioral responses to 2,3-butanedione. Specifically, RNAi mediated knockdown of CG6767 expression in different neuroanatomical populations of the olfactory system suggests that this gene functions in local interneurons of the antennal lobe. These results reveal a new role for CG6767 and its importance in olfactory behavior.


Behavioral genetics Olfaction Local interneuron Phosphoribosyl pyrophosphate synthetase 1 



We would like to thank John Layne for helpful discussions and critical feedback on the manuscript. We also thank members of the Rollmann lab for technical assistance and/or helpful discussions. We wish to acknowledge TRiP at the Harvard Medical School (NIH/NIGMS R01-GM084947) for providing transgenic RNAi stocks. This work was supported by the National Institutes of Health [Grant No. GM080592 to S.M.R.], the National Science Foundation Research Experiences for Undergraduates [Grant No. DBI-1262863, E.R.], and the University of Cincinnati Graduate School Dean’s Fellowship [E.B.].

Compliance with ethical standards

Conflict of interest

Elizabeth B. Brown, Emily Rayens and Stephanie M. Rollmann declare that they have no conflict of interest.

Statement of human and animal rights

This manuscript does not contain any studies with human participants.

Informed consent

For this type of study, informed consent is not required.

Supplementary material

10519_2019_9949_MOESM1_ESM.pdf (65 kb)
Supplementary material 1 (PDF 64 KB)
10519_2019_9949_MOESM2_ESM.pdf (10 kb)
Supplementary material 2 (PDF 10 KB)
10519_2019_9949_MOESM3_ESM.pdf (29 kb)
Supplementary material 3 (PDF 29 KB)
10519_2019_9949_MOESM4_ESM.pdf (70 kb)
Supplementary material 4 (PDF 69 KB)


  1. Acebes A, Martín-Peña A, Chevalier V, Ferrús A (2011) Synapse loss in olfactory local interneurons modifies perception. J Neurosci 31(8):2734–2745Google Scholar
  2. Anholt RR, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, Rollmann SM, Kamdar KP, Mackay TF (2003) The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat Genet 35:180–184Google Scholar
  3. Arya G, Magwire M, Huang W, Serrano-Negron Y, Mackay TF, Anholt RR (2015) The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40:233–243Google Scholar
  4. Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H (2009) The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 23:156–172Google Scholar
  5. Ayyub C, Paranjape J, Rodriques V, Siddiqi O (1990) Genetics of olfactory behavior in Drosophila melanogaster. J Neurogenet 6(4):243–262Google Scholar
  6. Becker MA (2001) Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Prog Nucleic Acid Res Mol Biol 69:115–148Google Scholar
  7. Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA (1988) Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med 85(3):383–390Google Scholar
  8. Brand A, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Dev Camb Engl 118:401–415Google Scholar
  9. Brown EB, Layne JE, Zhu C, Jegga AG, Rollmann SM (2013) Genome-wide association mapping of natural variation in odour-guided behaviour in Drosophila. Genes Brain Behav 12(5):503–515Google Scholar
  10. Cao W, Song HJ, Gangi T, Kelkar A, Antani I, Garza D, Konolaki M (2008) Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics 178(3):1457–1471Google Scholar
  11. Caron SJ, Ruta V, Abbott LF, Axel R (2013) Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:113–117Google Scholar
  12. Chou YH, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13(4):439–449Google Scholar
  13. Couto A, Alenius M, Dickson B (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547Google Scholar
  14. Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA, Sudhakaran IP, Priya R, Heidari R, Holohan EE, Pimentel A, Gandhi A, Ito K, Sanyal S, Wang JW, Rodrigues V, Ramaswami M (2011) Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci USA 108(36):E646–E654Google Scholar
  15. de Brouwer AP, Williams KL, Duley JA, van Kuilenburg AB, Nabuurs SB, Egmont-Peterson M, Lugtenberg D, Zoetekouw L, Banning MJ, Roeffen M, Hamel BC, Weaving L, Ouvrier RA, Donald JA, Wevers RA, Christodoulou J, van Bokhoven H (2007) Arts syndrome is caused by loss-of-function mutations in PRPS1. Am J Hum Genet 81(3):507–518Google Scholar
  16. de Brouwer AP, Duley JA, Christodoulou J (2008a) Phosphoribosylpyrophosphate synthetase superactivity. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® Seattle (WA). University of Washington, SeattleGoogle Scholar
  17. de Brouwer AP, Duley JA, Christodoulou J (2008b) Arts syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® Seattle (WA). University of Washington, SeattleGoogle Scholar
  18. de Brouwer AP, van Bokhoven H, Nabuurs SB, Arts WF, Christodoulou J, Duley J (2010) PRPS1 mutations: four distinct syndromes and potential treatment. Am J Hum Genet 86:506–518Google Scholar
  19. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156Google Scholar
  20. Dobritsa AA, Van der Goes van Naters W, Warr CG, Steinbrect RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841Google Scholar
  21. Dubnau J, Tully T (1998) Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21:407–444Google Scholar
  22. Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61(4):269–277Google Scholar
  23. Duley JA, Christodoulou J, de Brouwer AP (2011) The PRPP synthetase spectrum: what does it demonstrate about nucleotide syndromes? Nucleos Nucleot Nucl 30(12):1129–1139Google Scholar
  24. Dweck H, Ebrahim S, Khallaf M, Koenig C, Farhan A, Stieber R, Weißflog J, Svatoš A, Grosse-Wilde E, Knaden M, Hansson BS (2016) Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. Elife 5:e14925Google Scholar
  25. Fedorowicz GM, Fry JD, Anholt RR, Mackay TF (1998) Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148:1885–1891Google Scholar
  26. Fisek M, Wilson RI (2014) Stereotyped connectivity and computations in higher-order olfactory neurons. Nat Neurosci 17(2):280–288Google Scholar
  27. Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15:1548–1553Google Scholar
  28. Gao Q, Yuan B, Chess A (2000) Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 3:780–785Google Scholar
  29. García-Pavía P, Torres RJ, Rivero M, Ahmed M, García-Puig J, Becker MA (2003) Phyophoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis Rheum 48(7):2036–2041Google Scholar
  30. Goldman AL, van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666Google Scholar
  31. Gruntman E, Turner GC (2013) Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat Neurosci 16(12):1821–1829Google Scholar
  32. Handford M, Rodriquez-Furián C, Orellana A (2006) Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 39:1149–1158Google Scholar
  33. Hartman SC, Buchanan JM (1958) Biosynthesis of the purines. XXI. 5-phosphoribosylpyrophosphate amidotransferase. J Biol Chem 233(2):451–455Google Scholar
  34. He X, Zhou S, St Armour GE, Anholt RR (2016) Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior. Genes Brain Behav 15(2):280–290Google Scholar
  35. Helfand S, Carlson JR (1989) Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. Proc Natl Acad Sci USA 86:2908–2912Google Scholar
  36. Jefferis GS, Marin EC, Stocker RF, Luo L (2001) Target neuron prespecification in the olfactory map of Drosophila. Nature 414:204–208Google Scholar
  37. Kim JW, Kim HJ (2008) Charcot-Marie-Tooth Neuropathy X, Type 5. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® Seattle (WA). University of Washington, SeattleGoogle Scholar
  38. Kim HJ, Sohn KM, Shy ME, Krajewski KM, Hwang M, Park JH, Jang SY, Won HH, Choi BO, Hong SH, Kim BJ, Suh YL, Ki CS, Lee SY, Kim SH, Kim JW (2007) Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, case hereditary peripheral neuropathy with hearing loss and optic neuropathy (CMTX5). Am J Hum Genet 81(3):552–558Google Scholar
  39. Kornberg A, Lieberman I, Simms ES (1955) Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem 215(1):389–402Google Scholar
  40. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714Google Scholar
  41. Lieberman I, Kornberg A, Simms ES (1955) Enzymatic synthesis of pyrimidine nucleotides; orotidine-5′phosphate and uridine-5-phosphate. J Biol Chem 215(1):403–451Google Scholar
  42. Lilly M, Carlson JR (1990) Smellblind: A gene required for Drosophila olfaction. Genetics 124(2):293–302Google Scholar
  43. Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, Li X, Jin Z, Wang Y, Bitner-Glindzicz M, Kong X, Xu H, Kantardzhieva A, Eavey RD, Seidman CE, Seidman JG, Du LL, Chen ZY, Dai P, Teng M, Yan D, Yuan H (2010) Loss-of-function mutations in the PRPS1 gene causes a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet 86(1):65–71Google Scholar
  44. Liu XZ, Xie D, Yuan JH, de Brouwer APM, Christodoulou J, Yan D (2013) Hearing loss and PRPS1 mutations: wide spectrum of phenotypes and potential therapy. Int J Audiol 52:23–28Google Scholar
  45. Loeffler M, Zameitat E (2004) Pyrimidine biosynthesis. Encyc Biol Chem 3:600–605Google Scholar
  46. Marin EC, Jefferis GS, Komiyama T, Zhu H, Luo L (2001) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255Google Scholar
  47. Masuda-Nakagawa LM, Tanaka NK, O’Kane CJ (2005) Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc Natl Acad Sci USA 102(52):19027–19032Google Scholar
  48. Mayr D, Tilmann M, Lindinger W, Brevard H, Yeretzian C (2003) Breath-by-breath analysis of banana aroma by proton transfer mass spectrometry. Int J Mass Spectrom 223–224:743–756Google Scholar
  49. Micheli V, Camici M, Tozzi MG, Ipata PL, Sestini S, Bertelli M, Pompucci G (2011) Neurological disorders of purine and pyrimidine metabolism. Curr Top Med Chem 11(8):923–947Google Scholar
  50. Mittal R, Patel K, Mittal J, Chan B, Yan D, Grati M, Liu XZ (2015) Association of PRPS1 mutations with disease phenotypes. Dis Mark. Google Scholar
  51. Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C, Booker M, Perkins L, Perrimon N (2007) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5:49–51Google Scholar
  52. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H, Villalta C, Laverty TR, Perkins LA, Perrimon N (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100Google Scholar
  53. Nishimura O, Yamaguchi K, Mihara S, Shibamoto T (1989) Volatile constituents of guava fruits (Psidiu guajava L.) and canned puree. J Agric Food Chem 37(1):139–142Google Scholar
  54. Okada R, Awasaki T, Ito K (2009) Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol 514:74–91Google Scholar
  55. Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960Google Scholar
  56. Preiss J, Handler P (1958) Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem 233(2):488–492Google Scholar
  57. Ramdya P, Benton R (2010) Evolving olfactory systems on the fly. Trends Genet 26(7):307–316Google Scholar
  58. Richgels PK, Rollmann SM (2012) Genetic variation in odorant receptors contributes to variation in olfactory behavior in a natural population of Drosophila melanogaster. Chem Senses 37(3):229–240Google Scholar
  59. Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59(2):311–321Google Scholar
  60. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Majmoudi J (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24(1):1–10Google Scholar
  61. Sambandan D, Yamamoto A, Fanara JJ, Mackay TF, Anholt RR (2006) Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174:1349–1363Google Scholar
  62. Sampaio KL, Garruti DS, Franco MR, Janzantti NS, Da Silva MA (2011) Aroma volatiles recovered in the water phase of cashew apple (Anacardium occidentale L.) juice during concentration. J Sci Food Agric 91(10):1801–1809Google Scholar
  63. Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612Google Scholar
  64. Stocker RF, Heimbeck G, Gendre N, de Belle JS (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456Google Scholar
  65. Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ (2004) A single population of olfactory sensory neurons mediates an innate avoidance behavior in Drosophila. Nature 431:854–859Google Scholar
  66. Swarup S, Huang W, Mackay TF, Anholt RR (2013) Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proc Natl Acad Sci USA 110(3):1017–1022Google Scholar
  67. Tanaka N, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457Google Scholar
  68. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533Google Scholar
  69. Vosshall LB, Wong A, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159Google Scholar
  70. Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-β burden in an Alzheimer’s disease mouse model. J Neurosci 30(2):505–514Google Scholar
  71. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079Google Scholar
  72. Wong A, Wang J, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241Google Scholar
  73. Woodard C, Huang T, Sun J, Helfand SL, Carlson JR (1989) Genetic analysis of olfactory behavior in Drosophila: a new screen yields the Ota mutants. Genetics 123(2):315–326Google Scholar
  74. Yuan H, Liu XZ (2011) DFNX1 nonsyndromic hearing loss and deafness. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® Seattle (WA). University of Washington, SeattleGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of BiologyWittenberg UniversitySpringfieldUSA

Personalised recommendations