Sociability in Fruit Flies: Genetic Variation, Heritability and Plasticity

Abstract

Sociability, defined as individuals’ propensity to participate in non-aggressive activities with conspecifics, is a fundamental feature of behavior in many animals including humans. However, we still have a limited knowledge of the mechanisms and evolutionary biology of sociability. To enhance our understanding, we developed a new protocol to quantify sociability in fruit flies (Drosophila melanogaster). In a series of experiments with 59 F1 hybrids derived from inbred lines, we documented, first, significant genetic variation in sociability in both males and females, with broad-sense heritabilities of 0.24 and 0.21 respectively. Second, we observed little genetic correlation in sociability between the sexes. Third, we found genetic variation in social plasticity among the hybrids, with a broad-sense heritability of ~0.24. That is, genotypes differed in the degree of sociability after experiencing the same relevant social experience. Our data pave the way for further research on the mechanisms that underlie sociability as well as its ecological and evolutionary consequences.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355. http://www.nature.com/nrg/journal/v9/n5/suppinfo/nrg2346_S1.html

  2. Allee WC (1931) Animal aggregations. A study in general sociology. University of Chicago Press, Chicago

    Google Scholar 

  3. Allee WC (1942) Group organization among vertebrates. Science 95:289–293. https://doi.org/10.1126/science.95.2464.289

    Article  PubMed  Google Scholar 

  4. Anderson BB, Scott A, Dukas R (2016) Social behaviour and activity are decoupled in larval and adult fruit flies. Behav Ecol 27:820–828

    Article  Google Scholar 

  5. Anderson BB, Scott A, Dukas R (2017) Indirect genetic effects on the sociability of several group members. Anim Behav 123:101–106. https://doi.org/10.1016/j.anbehav.2016.10.028

    Article  Google Scholar 

  6. Araya-Ajoy YG, Dingemanse NJ (2017) Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J Anim Ecol 86:227–238. https://doi.org/10.1111/1365-2656.12621

    Article  PubMed  Google Scholar 

  7. Ashburner M (1989) Drosophila a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  8. Bartelt RJ, Schaner AM, Jackson LL (1985) cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756

    Article  PubMed  Google Scholar 

  9. Bartholomew NR, Burdett JM, VandenBrooks JM, Quinlan MC, Call GB (2015) Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci Rep 5:15298. https://doi.org/10.1038/srep15298 http://www.nature.com/articles/srep15298#supplementary-information

  10. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–10. http://CRAN.R-project.org/package=lme4. Accessed 14 June 2017

  11. Battesti M, Moreno C, Joly D, Mery F (2012) Spread of social information and dynamics of social transmission within Drosophila groups. Curr Biol 22:309–313. https://doi.org/10.1016/j.cub.2011.12.050

    Article  PubMed  Google Scholar 

  12. Baxter CM, Dukas R (2017) Life history of aggression: effects of age and sexual experience on male aggression towards males and females. Anim Behav 123:11–20

    Article  Google Scholar 

  13. Bolduc FV, Valente D, Mitra P, Tully T (2010) An assay for social interaction in Drosophila fragile X mutants. Fly 4:216–225

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A et al (2017) Modeling zero-inflated count data with glmmtmb. bioRxiv 2017:132753

    Google Scholar 

  15. Buss AH, Perry M (1992) The aggression questionnaire. J Pers Social Psychol 63:452

    Article  Google Scholar 

  16. Canty A, Ripley B (2017) boot: Bootstrap R (S-Plus) Functions. R package version, pp 13–20

  17. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  PubMed  Google Scholar 

  18. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA (2002) Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci 99:5664–5668. https://doi.org/10.1073/pnas.082102599

    Article  PubMed  PubMed Central  Google Scholar 

  19. Constantino JN, Todd RD (2000) Genetic structure of reciprocal social behavior. Am J Psychiatry 157:2043–2045

    Article  PubMed  Google Scholar 

  20. Cote J, Clobert J (2007) Social personalities influence natal dispersal in a lizard. Proc R Soc Lond B 274:383–390

    Article  Google Scholar 

  21. Cote J, Fogarty S, Sih A (2012) Individual sociability and choosiness between shoal types. Anim Behav 83:1469–1476. https://doi.org/10.1016/j.anbehav.2012.03.019

    Article  Google Scholar 

  22. De Bono M, Bargmann CI (1998) Natural variation in a neuropeptide y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689

    Article  PubMed  Google Scholar 

  23. Dingemanse NJ, Van der Plas F, Wright J, Réale D, Schrama M, Roff DA et al (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B. https://doi.org/10.1098/rspb.2008.1555

    Google Scholar 

  24. Dingemanse N, Barber I, Wright J, Brommer J (2012) Quantitative genetics of behavioural reaction norms: genetic correlations between personality and behavioural plasticity vary across stickleback populations. J Evol Biol 25:485–496

    Article  PubMed  Google Scholar 

  25. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904. https://doi.org/10.1126/science.1158668

    Article  PubMed  Google Scholar 

  26. Durisko Z, Kemp B, Mubasher A, Dukas R (2014) Dynamics of social interactions in fruit fly larvae. PLoS ONE 9:e95495. https://doi.org/10.1371/journal.pone.009549

    Article  PubMed  PubMed Central  Google Scholar 

  27. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Benjamin Cummings, New York

    Google Scholar 

  28. Fernandez RW, Akinleye AA, Nurilov M, Feliciano O, Lollar M, Aijuri RR et al (2017) Modulation of social space by dopamine in Drosophila melanogaster but no effect on the avoidance of the Drosophila stress odorant. Biol Lett 13:20170369

    Article  PubMed  Google Scholar 

  29. Fowler JH, Dawes CT, Christakis NA (2009) Model of genetic variation in human social networks. Proc Natl Acad Sci 106:1720–1724. https://doi.org/10.1073/pnas.0806746106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fox J, Weisberg S (2011) An R companion to applied regression. SAGE Inc, Thousand Oaks

    Google Scholar 

  31. Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7:1325–1330. https://doi.org/10.1111/2041-210X.12584

    Article  Google Scholar 

  32. Gallardo-Pujol D, Andrés-Pueyo A, Maydeu-Olivares A (2013) MAOA genotype, social exclusion and aggression: an experimental test of a gene–environment interaction. Genes Brain Behav 12:140–145. https://doi.org/10.1111/j.1601-183X.2012.00868.x

    Article  PubMed  Google Scholar 

  33. Gammie SC, Hasen NS, Rhodes JS, Girard I, Garland T (2003) Predatory aggression, but not maternal or intermale aggression, is associated with high voluntary wheel-running behavior in mice. Horm Behav 44:209–221. https://doi.org/10.1016/S0018-506X(03)00140-5

    Article  PubMed  Google Scholar 

  34. Gómez JM, Verdú M, González-Megías A, Méndez M (2016) The phylogenetic roots of human lethal violence. Nat Adv. https://doi.org/10.1038/nature19758. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature19758.html#supplementary-information

  35. Greenspan RJ (2004) Fly pushing: the theory and practice of Drosophila genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  36. Halekoh U, Højsgaard S (2014) A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest. J Stat Softw 59:1–32

    Article  Google Scholar 

  37. Hoffmann AA (1990) The influence of age and experience with conspecifics on territorial behavior in Drosophila-melanogaster. J Insect Behav 3:1–12

    Article  Google Scholar 

  38. Horton BM, Moore IT, Maney DL (2014) New insights into the hormonal and behavioural correlates of polymorphism in white-throated sparrows, Zonotrichia albicollis. Anim Behav 93:207–219. https://doi.org/10.1016/j.anbehav.2014.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  39. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204

    PubMed  PubMed Central  Google Scholar 

  40. Johnson DD, Kays R, Blackwell PG, Macdonald DW (2002) Does the resource dispersion hypothesis explain group living? Trends Ecol Evol 17:563–570

    Article  Google Scholar 

  41. Krebs CJ (1999) Ecological methodology, 2 edn. Addison-Wesley, Menlo Park

    Google Scholar 

  42. Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298:2010–2012

    Article  PubMed  Google Scholar 

  43. Lihoreau M, Clarke IM, Buhl J, Sumpter DJT, Simpson SJ (2016) Collective selection of food patches in Drosophila. J Exp Biol 219:668–375

    Article  PubMed  Google Scholar 

  44. Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, Simpson SJ et al (2017) Collective foraging in spatially complex nutritional environments. Philos Trans R Soc B 372:20160238

    Article  Google Scholar 

  45. Lin C-C, Prokop-Prigge KA, Preti G, Potter CJ (2015) Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 4:e08688. https://doi.org/10.7554/eLife.08688

    PubMed  PubMed Central  Google Scholar 

  46. Lukas D, Clutton-Brock TH (2013) The evolution of social monogamy in mammals. Science 341:526–530

    Article  PubMed  Google Scholar 

  47. Macdonald DW (1983) The ecology of carnivore social behaviour. Nature 301:379–384

    Article  Google Scholar 

  48. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D et al (2012) The Drosophila melanogaster genetic reference panel. Nature 482:173–178. http://www.nature.com/nature/journal/v482/n7384/abs/nature10811.html#supplementary-information

  49. Mason DA, Frick PJ (1994) The heritability of antisocial behavior: a meta-analysis of twin and adoption studies. J Psychopathol Behav Assess 16:301–323

    Article  Google Scholar 

  50. Moy SS, Nadler J (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13:4–26

    Article  PubMed  Google Scholar 

  51. Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310:304–306

    Article  PubMed  Google Scholar 

  52. Pasquaretta C, Battesti M, Klenschi E, Bousquet CAH, Sueur C, Mery F (2016) How social network structure affects decision-making in Drosophila melanogaster. Proc R Soc Lond B 283:20152954

    Article  Google Scholar 

  53. Pearce E, Wlodarski R, Machin A, Dunbar RIM (2017) Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proc Natl Acad Sci 114:5300–5305. https://doi.org/10.1073/pnas.1700712114

    Article  PubMed  PubMed Central  Google Scholar 

  54. Penn JKM, Zito MF, Kravitz EA (2010) A single social defeat reduces aggression in a highly aggressive strain of Drosophila. Proc Natl Acad Sci 107:12682–12686. https://doi.org/10.1073/pnas.1007016107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Philippe A-S, Jeanson R, Pasquaretta C, Rebaudo F, Sueur C, Mery F (2016) Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila. Proc R Soc Lond B 283:20152967

    Article  Google Scholar 

  56. R-Core-Team (2014) R: a language and environment for statistical computing, Vienna. http://www.R-project.org. Accessed 14 June 2017

  57. Rettew DC, Rebollo-Mesa I, Hudziak JJ, Willemsen G, Boomsma DI (2008) Non-additive and additive genetic effects on extraversion in 3314 Dutch adolescent twins and their parents. Behav Genet 38:223–233. https://doi.org/10.1007/s10519-008-9192-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rohde PD, Gaertner B, Wards K, Sørensen P, Mackay TF (2017) Genomic analysis of genotype by social environment interaction for Drosophila aggressive behavior. Genetics. https://doi.org/10.1534/genetics.117.200642

    PubMed  Google Scholar 

  59. Roles AJ, Rutter MT, Dworkin I, Fenster CB, Conner JK (2016) Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 70:1039–1050

    Article  PubMed  Google Scholar 

  60. Rushton JP, Fulker DW, Neale MC, Nias DK, Eysenck HJ (1986) Altruism and aggression: the heritability of individual differences. J Pers Soc Psychol 50:1192–1198

    Article  PubMed  Google Scholar 

  61. Saltz JB (2011) Natural genetic variation in social environment choice: context-dependent gene–environment correlation in Drosophila melanogaster. Evolution 65:2325–2334. https://doi.org/10.1111/j.1558-5646.2011.01295.x

    Article  PubMed  Google Scholar 

  62. Saltz JB, Foley BR (2011) Natural genetic variation in social niche construction: social effects of aggression drive disruptive sexual selection in Drosophila melanogaster. Am Nat 177:645–654

    Article  PubMed  Google Scholar 

  63. Sandnabba NK (1996) Selective breeding for isolation-induced intermale aggression in mice: associated responses and environmental influences. Behav Genet 26:477–488. https://doi.org/10.1007/BF02359752

    Article  PubMed  Google Scholar 

  64. Sarin S, Dukas R (2009) Social learning about egg laying substrates in fruit flies. Proc R Soc Lond B 276:4323–4328

    Article  Google Scholar 

  65. Scheiner SM, Lyman RF (1989) The genetics of phenotypic plasticity I. Heritability. J Evol Biol 2:95–107

    Article  Google Scholar 

  66. Schneider J, Dickinson MH, Levine JD (2012) Social structures depend on innate determinants and chemosensory processing in Drosophila. Proc Natl Acad Sci 109:17174–17179. https://doi.org/10.1073/pnas.1121252109

    Article  PubMed  PubMed Central  Google Scholar 

  67. Scourfield J, Martin N, Lewis G, McGuffin P (1999) Heritability of social cognitive skills in children and adolescents. Br J Psychiatry 175:559

    Article  PubMed  Google Scholar 

  68. Shorter J, Couch C, Huang W, Carbone MA, Peiffer J, Anholt RRH et al (2015) Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior. Proc Natl Acad Sci 112:E3555–E3563. https://doi.org/10.1073/pnas.1510104112

    Article  Google Scholar 

  69. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502. http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2851_S1.html

  70. Simon AF, Chou MT, Salazar ED, Nicholson T, Saini N, Metchev S et al (2012) A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav 11:243–252. https://doi.org/10.1111/j.1601-183X.2011.00740.x

    Article  PubMed  Google Scholar 

  71. Skuse DH, Lori A, Cubells JF, Lee I, Conneely KN, Puura K et al (2014) Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proc Natl Acad Sci 111:1987–1992. https://doi.org/10.1073/pnas.1302985111

    Article  PubMed  Google Scholar 

  72. Stirling D, Réale D, Roff D (2002) Selection, structure and the heritability of behaviour. J Evol Biol 15:277–289

    Article  Google Scholar 

  73. Thomas JW, Cáceres M, Lowman JJ, Morehouse CB, Short ME, Baldwin EL et al (2008) The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. Genetics 179:1455

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thorneycroft H (1966) Chromosomal polymorphism in the white-throated sparrow, Zonotrichia albicollis (Gmelin). Science 154:1571–1572

    Article  PubMed  Google Scholar 

  75. Thorneycroft HB (1975) A cytogenetic study of the white-throated sparrow, Zonotrichia albicollis (gmelin). Evolution 29:611–621

    Article  PubMed  Google Scholar 

  76. Tinette S, Zhang L, Robichon A (2004) Cooperation between Drosophila flies in searching behavior. Genes Brain Behav 3:39–50

    Article  PubMed  Google Scholar 

  77. Tuttle AH, Tansley S, Dossett K, Tohyama S, Khoutorsky A, Maldonado-Bouchard S et al (2017) Social propinquity in rodents as measured by tube cooccupancy differs between inbred and outbred genotypes. Proc Natl Acad Sci 114:5515–5520. https://doi.org/10.1073/pnas.1703477114

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ueda A, Kidokoro Y (2002) Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol Entomol 27:21–28

    Article  Google Scholar 

  79. Valzelli L (1973) The “isolation syndrome” in mice. Psychopharmacologia 31:305–320. https://doi.org/10.1007/bf00421275

    Article  PubMed  Google Scholar 

  80. van den Berg SM, de Moor MHM, Verweij KJH, Krueger RF, Luciano M, Arias Vasquez A et al (2016) Meta-analysis of genome-wide association studies for extraversion: findings from the genetics of personality consortium. Behav Genet 46:170–182. https://doi.org/10.1007/s10519-015-9735-5

    Article  PubMed  Google Scholar 

  81. Viken RJ, Rose RJ, Kaprio J, Koskenvuo M (1994) A developmental genetic analysis of adult personality: extraversion and neuroticism from 18 to 59 years of age. J Pers Soc Psychol 66:722

    Article  PubMed  Google Scholar 

  82. Walum H, Westberg L, Henningsson S, Neiderhiser JM, Reiss D, Igl W et al (2008) Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc Natl Acad Sci 105:14153–14156. https://doi.org/10.1073/pnas.0803081105

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang L, Dankert H, Perona P, Anderson DJ (2008) A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci USA 105:5657–5663

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ward A, Webster M (2016) Sociality: the behaviour of group living animals. Springer, Basel

    Google Scholar 

  85. Wertheim B, Allemand R, Vet LEM, Dicke M (2006) Effects of aggregation pheromone on individual behaviour and food web interactions: a field study on Drosophila. Ecol Entomol 31:216–226

    Article  Google Scholar 

  86. Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  87. Yuan Q, Song Y, Yang C-H, Jan LY, Jan YN (2014) Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci 17:81–88. https://doi.org/10.1038/nn.3581

    Article  PubMed  Google Scholar 

  88. Zhang B, Freeman MR, Waddell S (2010) Drosophila neurobiology: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  89. Zwarts L, Vanden Broeck L, Cappuyns E, Ayroles JF, Magwire MM, Vulsteke V et al (2015) The genetic basis of natural variation in mushroom body size in Drosophila melanogaster. Nat Commun 6:10115. https://doi.org/10.1038/ncomms10115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Bolker for statistical advice and S. Lodhi, A. Sivajohan, E. Etzler, I. Shams, S. Tao, and C. Baxter for assistance and three anonymous referees for comments.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada 2014–03999 to RD, Canada Foundation for Innovation, and Ontario Ministry of Research and Innovation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reuven Dukas.

Ethics declarations

Conflict of interest

AM Scott, I Dworkin and R Dukas declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Yong-Kyu Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, A.M., Dworkin, I. & Dukas, R. Sociability in Fruit Flies: Genetic Variation, Heritability and Plasticity. Behav Genet 48, 247–258 (2018). https://doi.org/10.1007/s10519-018-9901-7

Download citation

Keywords

  • Drosophila melanogaster
  • Fruit flies
  • Genetic variation, heritability
  • Plasticity
  • Reaction norms
  • Sociability, social behavior