Behavior Genetics

, Volume 47, Issue 3, pp 305–322 | Cite as

Differential Brain, Cognitive and Motor Profiles Associated with Partial Trisomy. Modeling Down Syndrome in Mice

  • Pierre L. RoubertouxEmail author
  • Nathalie Baril
  • Pierre Cau
  • Christophe Scajola
  • Adeline Ghata
  • Catherine Bartoli
  • Patrice Bourgeois
  • Julie di Christofaro
  • Sylvie Tordjman
  • Michèle Carlier
Original Research


We hypothesize that the trisomy 21 (Down syndrome) is the additive and interactive outcome of the triple copy of different regions of HSA21. Because of the small number of patients with partial trisomy 21, we addressed the question in the Mouse in which three chromosomal regions located on MMU10, MMU17 and MMU16 carries almost all the HSA21 homologs. Male mice from four segmental trisomic strains covering the D21S17-ETS2 (syntenic to MMU16) were examined with an exhaustive battery of cognitive tests, motor tasks and MRI and compared with TS65Dn that encompasses D21S17-ETS2. None of the four strains gather all the impairments (measured by the effect size) of TS65Dn strain. The 152F7 strain was close to TS65Dn for motor behavior and reference memory and the three other strains 230E8, 141G6 and 285E6 for working memory. Episodic memory was impaired only in strain 285E6. The hippocampus and cerebellum reduced sizes that were seen in all the strains indicate that trisomy 21 is not only a hippocampus syndrome but that it results from abnormal interactions between the two structures.


Trisomy 21 D21S17-ETS2 region MRI Protein–protein interactions Effect size Cognition 



We thank INSERM U 910 “Génétique Médicale, Génomique Fonctionnelle”, CNRS UMR 7290 Psychologie cognitive, Fédération de Recherche 3C–Comportement Cerveau–Cognition, and Aix Marseille University, and also the Fondation Jérôme Lejeune. AFI-Aveyron provided invaluable assistance with computer software for the MWM analysis and the Cavalieri stereology method. We wish to express our gratitude to the European Mouse Mutant Archive (EMMA) for the generous gift of two strains of segmental trisomic mice. Maire-Laure Dessain (UPS 44 TAAM, CNRS) genotyped the mice. Our special thanks to the anonymous reviewers of the first version of the manuscript and to Doctor Henri Bléhaut for his scientific support.

Author contributions

Conceived and designed the experiments: P-L Roubertoux, M. Carlier, S. Tordjman. Behavioral assessment of the mice: P-L Roubertoux, A. Ghata, C. Bartoli, M. Carlier. MRI: N Baril. P. Cau, P-L. Roubertoux. Data analysis : P-L Roubertoux, M Carlier. Molecular analysis: J. di Christofaro, P Bourgeois, P-L Roubertoux. Mouse breeding: C. Scajola. Wrote the paper: P-L Roubertoux, M Carlier. All the authors reviewed the manuscript for intellectual content and approved submission.

Compliance with Ethical Standards

Conflict of interest

Pierre L. Roubertoux, Nathalie Baril, Pierre Cau, Christophe Scajola, Adeline Ghata, Catherine Bartoli, Patrice Bourgeois, Julie di Christofaro, Sylvie Tordjman, Michèle Carlier declare that they have no conflict of interests.

Ethical approval

The protocols for the present study were approved by the Comité d’éthique pour l’expérimentation animale n°14, under the title “Rôle de la région D21517-ET52 (MMU 16) dans les dysfonctions cérébrales de souris modèles du syndrome de Down,” with PL Roubertoux as the main investigator (reference number 23- 23092012, dated October 11, 2012).


  1. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, Rifkin L, Murray RM (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain 124:60–66CrossRefPubMedGoogle Scholar
  2. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet 5:725–738CrossRefPubMedGoogle Scholar
  3. Arenas M.C., Daza-Losada M., Vidal-Infer A., Aguilar M.A., Minarro J., Rodriguez-Arias M. (2014). Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine. Physiol Behav 133, 152–160.CrossRefPubMedGoogle Scholar
  4. Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, Mobley WC (2009) The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J neurosci 29:5938–5948CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blednov YA, Stoffel M, Alva H, Harris RA (2003) A pervasive mechanism for analgesia: activation of GIRK2 channels. Proc Natl Acad Sci USA 100:277–282CrossRefPubMedGoogle Scholar
  6. Boker LK, Blumstein T, Sadetzki S, Luxenburg O, Litvak I, Akstein E, Modan B (2001). Incidence of leukemia and other cancers in Down syndrome subjects in Israel. Int J Cancer 93, 741–744.CrossRefPubMedGoogle Scholar
  7. Bourgeois P, Roubertoux PL (2015) Finding endophenotypes for autism spectrum disorders (ASD): cDNA microarrays and brain transcripts. In: Neuromethods, Roubertoux PL (eds) Organism models of autism spectrum disorders. Springer, New York, pp 217–238CrossRefGoogle Scholar
  8. Breia P, Mendes R, Silvestre A, Goncalves MJ, Figueira MJ, Bispo R (2014) Adults with Down syndrome: characterization of a Portuguese sample. Acta Med Port 27:357–363CrossRefPubMedGoogle Scholar
  9. Carlier M, Roubertoux PL (2014) Genetic and environmental influences on intellectual disability in childhood. In: Finkel D. and Reynold C.A. (eds) Behavior genetics of cognition across the lifespan Springer, New york, pp 69–101CrossRefGoogle Scholar
  10. Carlier M, Desplanches AG, Philip N, Stefanini S, Vicari S, Volterra V, Deruelle C, Fisch G, Doyen AL, Swillen A (2011) Laterality preference and cognition: cross-syndrome comparison of patients with trisomy 21 (Down), del7q11.23 (Williams-Beuren) and del22q11.2 (DiGeorge or Velo-Cardio-Facial) syndromes. Behav Genet 41:413–422CrossRefPubMedGoogle Scholar
  11. Carr J (2012) Six weeks to 45 years: a longitudinal study of a population with Down syndrome. J Appl Res Intellect Disabil 25:414–422CrossRefPubMedGoogle Scholar
  12. Caston J, Chianale C, Mariani J (2004) Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging. Behav Genet 34:319–324CrossRefPubMedGoogle Scholar
  13. Caubit X, Gubellini P, Andrieux J, Roubertoux PL, Metwaly M, Jacq B, Fatmi A, Had-Aissouni L, Kwan KY, Salin P et al. (2016). TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat GenetGoogle Scholar
  14. Chabert C, Jamon M, Cherfouh A, Duquenne V, Smith DJ, Rubin E, Roubertoux PL (2004) Functional analysis of genes implicated in Down syndrome: 1. Cognitive abilities in mice transpolygenic for Down Syndrome Chromosomal Region-1 (DCR-1). Behav Genet 34:559–569CrossRefPubMedGoogle Scholar
  15. Chapman RS, Hesketh LJ (2001) Language, cognition, and short-term memory in individuals with Down syndrome. Down’s Syndr Res Pract 7:1–7CrossRefGoogle Scholar
  16. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associates., Hillsdale, NJGoogle Scholar
  17. Colombel C, Lalonde R, Caston J (2004) The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res 1004:108–115CrossRefPubMedGoogle Scholar
  18. Contarino A., Baca L., Kennelly A., Gold L.H. (2002). Automated assessment of conditioning parameters for context and cued fear in mice. Learning & memory 9, 89–96.CrossRefGoogle Scholar
  19. Cooper A, Grigoryan G, Guy-David L, Tsoory MM, Chen A, Reuveny E (2012) Trisomy of the G protein-coupled K + channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice. Proc Natl Acad Sci USA 109:2642–2647CrossRefPubMedPubMedCentralGoogle Scholar
  20. Costanzo F, Varuzza C, Menghini D, Addona F, Gianesini T, Vicari S (2013) Executive functions in intellectual disabilities: a comparison between Williams syndrome and Down syndrome. Res Dev Disabil 34:1770–1780CrossRefPubMedGoogle Scholar
  21. Coussons-Read ME, Crnic LS (1996) Behavioral assessment of the Ts65Dn mouse, a model for Down syndrome: altered behavior in the elevated plus maze and open field. Behav Genet 26:7–13CrossRefPubMedGoogle Scholar
  22. Couzens D., Cuskelly M., Haynes M. (2011). Cognitive development and Down syndrome: age-related change on the Stanford-Binet test (fourth edition). Am J Intellect Dev Disabil 116: 181–204.CrossRefPubMedGoogle Scholar
  23. Davisson MT, Schmidt C, Akeson EC (1990). Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 360: 263–280.PubMedGoogle Scholar
  24. Delabar JM, Theophile D, Rahmani Z, Chettouh Z, Blouin JL, Prieur M, Noel B, Sinet PM (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Human Genet 1:114–124.Google Scholar
  25. Denenberg VH (1969) Open-field bheavior in the rat: what does it mean? Ann N Y Acad Sci 159:852–859CrossRefPubMedGoogle Scholar
  26. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59CrossRefPubMedGoogle Scholar
  27. Escorihuela RM, Fernandez-Teruel A, Vallina IF, Baamonde C, Lumbreras MA, Dierssen M, Tobena A, Florez J (1995). A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146CrossRefPubMedGoogle Scholar
  28. Escorihuela RM, Vallina IF, Martinez-Cue C, Baamonde C, Dierssen M, Tobena A, Florez J, Fernandez-Teruel A (1998). Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 247:171–174CrossRefPubMedGoogle Scholar
  29. Field A (2005) Discovering statistics using SPSS. SAGE, LondonGoogle Scholar
  30. Galli M, Cimolin V, Ferrario D, Patti P, Heaney G, Freedland R, Albertini G, Brown WT (2013). Quantitative 3D evaluation of step ascent and descent in individuals with Down syndrome–analysis of a daily challenging task. J Intellect Disabil Res 57:1143–1151PubMedGoogle Scholar
  31. Ginsburg BE A, WC (1942) Some effects on conditioning on social dominance and subordination in inbred strains of mice. Physiol Zool 15:485–506CrossRefGoogle Scholar
  32. Goddyn H, Leo S, Meert T, D’Hooge R (2006) Differences in behavioural test battery performance between mice with hippocampal and cerebellar lesions. Behav Brain Res 173:138–147CrossRefPubMedGoogle Scholar
  33. Grieco J, Pulsifer M, Seligsohn K, Skotko B, Schwartz A (2015). Down syndrome: Cognitive and behavioral functioning across the lifespan. Am J Med Genet Part C 169:135–149.CrossRefPubMedGoogle Scholar
  34. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK et al (2000) The DNA sequence of human chromosome 21. Nature 405:311–319CrossRefPubMedGoogle Scholar
  35. Higurashi M, Oda M, Iijima K, Iijima S, Takeshita T, Watanabe N, Yoneyama K (1990) Livebirth prevalence and follow-up of malformation syndromes in 27,472 newborns. Brain development 12:770–773CrossRefPubMedGoogle Scholar
  36. Hodges H (1996). Maze procedures: the radial-arm and water maze compared. Brain Res Cognit Brain Res 3:167–181.CrossRefGoogle Scholar
  37. Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci USA 109:5052–5056CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jackson JF, North ER, 3rd, Thomas JG (1976). Clinical diagnosis of Down’s syndrome. Clin Genet 9:483–487.CrossRefPubMedGoogle Scholar
  39. Janzen LA, David D, Walker D, Hitzler J, Zupanec S, Jones H, Spiegler BJ (2015). Pre-Morbid developmental vulnerabilities in children with newly diagnosed acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 62:2183–2188.CrossRefPubMedGoogle Scholar
  40. Jiang X, Liu C, Yu T, Zhang L, Meng K, Xing Z, Belichenko PV, Kleschevnikov AM, Pao A, Peresie J, et al. (2015). Genetic dissection of the Down syndrome critical region. Human Mol Genet 24:6540–6551.CrossRefGoogle Scholar
  41. Jover M, Ayoun C, Berton C, Carlier M (2010). Specific grasp characteristics of children with trisomy 21. Dev Psychobiol 52:782–793.CrossRefPubMedGoogle Scholar
  42. Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani I (2003) SEE locomotor behavior test discriminates C57BL/6 J and DBA/2 J mouse inbred strains across laboratories and protocol conditions. Behav Neurosci 117:464–477CrossRefPubMedGoogle Scholar
  43. Kida E, Rabe A, Walus M, Albertini G, Golabek AA (2013). Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178–189.CrossRefPubMedGoogle Scholar
  44. Kleschevnikov AM, Belichenko PV, Gall J, George L, Nosheny R, Maloney MT, Salehi A, Mobley WC (2012). Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 45:683–691.CrossRefPubMedGoogle Scholar
  45. Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C et al (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 91:4997–5001CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lanfranchi S, Jerman O, Dal Pont E, Alberti A, Vianello R (2010). Executive function in adolescents with Down Syndrome. J Intellect Disabil Res 54:308–319.CrossRefPubMedGoogle Scholar
  47. Lavenex PB, Bostelmann M, Brandner C, Costanzo F, Fragniere E, Klencklen G, Lavenex P, Menghini D, Vicari S (2015). Allocentric spatial learning and memory deficits in Down syndrome. Front Psychol 6:62.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lipp HP, Wahlsten D (1992) Absence of corpus callosum. In: Driscoll P (ed) Genetically defined animal models of neurological disorders. Birkhauser, Boston, pp 152–174Google Scholar
  49. Liu C, Belichenko PV, Zhang L, Fu D, Kleschevnikov AM, Baldini A, Antonarakis SE, Mobley WC, Yu YE (2011). Mouse models for Down syndrome-associated developmental cognitive disabilities. Dev Neurosci 33:404–413.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lyle R, Bena F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, et al. (2009). Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Human Genet 17:454–466.CrossRefGoogle Scholar
  51. Lyon L, Saksida LM, Bussey TJ (2012) Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology 220:647–672CrossRefPubMedGoogle Scholar
  52. Makanjuola RO, Hill G, Maben I, Dow RC, Ashcroft GW (1977) An automated method for studying exploratory and stereotyped behaviour in rats. Psychopharmacology 52:271–277CrossRefPubMedGoogle Scholar
  53. Matynia A, Kushner SA, Silva AJ (2002) Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu Rev Genet 36:687–720CrossRefPubMedGoogle Scholar
  54. Maxson SC,Canastar A (2003). Conceptual and methodological issues in the genetics of mouse agonistic behavior. Horm Behav 44:258–262.CrossRefPubMedGoogle Scholar
  55. Menghini D, Costanzo F, Vicari S (2011) Relationship between brain and cognitive processes in Down syndrome. Behav Genet 41:381–393CrossRefPubMedGoogle Scholar
  56. Mezei G, Sudan M, Izraeli S, Kheifets L (2014). Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol 38:479–489.CrossRefPubMedGoogle Scholar
  57. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468CrossRefPubMedGoogle Scholar
  58. Nokia MS, Wikgren J (2010) Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning. Hippocampus 20:457–460PubMedGoogle Scholar
  59. Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690CrossRefPubMedPubMedCentralGoogle Scholar
  60. Olson LE, Roper RJ, Sengstaken CL, Peterson EA, Aquino V, Galdzicki Z, Siarey R, Pletnikov M, Moran TH, Reeves RH (2007). Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for brain phenotypes of trisomic mice. Human Mol Genet 16:774–782.CrossRefGoogle Scholar
  61. Palisano RJ, Walter SD, Russell DJ, Rosenbaum PL, Gemus M, Galuppi BE, Cunningham L (2001) Gross motor function of children with down syndrome: creation of motor growth curves. Arch Phys Med Rehabil 82:494–500CrossRefPubMedGoogle Scholar
  62. Palkovits M, Brownstein MJ (1988). Maps and guide to microdissection of the rat brain New York, Elsevier.Google Scholar
  63. Patterson T, Rapsey CM, Glue P (2013). Systematic review of cognitive development across childhood in Down syndrome: implications for treatment interventions. J Intellect Disabil Res 57:306–318.CrossRefPubMedGoogle Scholar
  64. Paxinos G, Franklin KBJ (2004). The mouse brain in stereotaxic coordinates, Compact. 2nd edn. Elsevier Academic Press, AmsterdamGoogle Scholar
  65. Peng GP, Feng Z, He FP, Chen ZQ, Liu XY, Liu P, Luo BY (2015). Correlation of hippocampal volume and cognitive performances in patients with either mild cognitive impairment or Alzheimer’s disease. CNS Neurosci Ther 21:15–22.CrossRefPubMedGoogle Scholar
  66. Pennington BF, Moon J, Edgin J, Stedron J, Nadel L (2003). The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev 74:75–93.CrossRefPubMedGoogle Scholar
  67. Pereira PL, Magnol L, Sahun I, Brault V, Duchon A, Prandini P, Gruart A, Bizot JC, Chadefaux-Vekemans B, Deutsch S, et al. (2009). A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Mol Genet 18:4756–4769.CrossRefGoogle Scholar
  68. Poissonnier M, Saint-Paul B, Dutrillaux B, Chassaigne M, Gruyer P, de Blignieres-Strouk G (1976). [Partial trisomy 21 (21q21–21q22.2)]. Annales de genetique 19:69–73.PubMedGoogle Scholar
  69. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Davisson MT (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184CrossRefPubMedGoogle Scholar
  70. Rigoldi C, Galli M, Condoluci C, Carducci F, Onorati P, Albertini G (2009) Gait analysis and cerebral volumes in Down’s syndrome. Funct Neurol 24:147–152PubMedGoogle Scholar
  71. Rosin JM, McAllister BB, Dyck RH, Percival CJ, Kurrasch DM, Cobb J (2015) Mice lacking the transcription factor SHOX2 display impaired cerebellar development and deficits in motor coordination. Dev Biol 399:54–67CrossRefPubMedGoogle Scholar
  72. Roubertoux PL, Carlier M (2009) Neurogenetic analysis and cognitive functions in Trisomy 21. In: Kim Y.K.K. (ed) Handbook of behavior genetics. Springer, New York, pp 175–185CrossRefGoogle Scholar
  73. Roubertoux PL, Carlier M (2010). Mouse models of cognitive disabilities in trisomy 21 (Down syndrome). Am J Med Genet Part C 154 C:400–416.CrossRefGoogle Scholar
  74. Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M et al (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69CrossRefPubMedGoogle Scholar
  75. Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95:6256–6261CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sago H, Carlson EJ, Smith DJ, Rubin EM, Crnic LS, Huang TT, Epstein CJ (2000). Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr Res 48:606–613.CrossRefPubMedGoogle Scholar
  77. Sanderson DJ, Bannerman DM (2011). Competitive short-term and long-term memory processes in spatial habituation. J Exp Psychol Anim Behav Process 37:189–199.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Seregaza Z, Roubertoux PL, Jamon M, Soumireu-Mourat B (2006) Mouse models of cognitive disorders in trisomy 21: a review. Behav Genet 36:387–404CrossRefPubMedGoogle Scholar
  79. Siraly E, Szabo A, Szita B, Kovacs V, Fodor Z, Marosi C, Salacz P, Hidasi Z, Maros V, Hanak P et al (2015) Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study. PloS ONE 10:e0117918CrossRefPubMedPubMedCentralGoogle Scholar
  80. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O’Dell TJ, Fung J, Weier HU, Cheng JF et al (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16:28–36CrossRefPubMedGoogle Scholar
  81. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–452.CrossRefPubMedGoogle Scholar
  82. Tsao R, Kindelberger C (2009). Variability of cognitive development in children with Down syndrome: relevance of good reasons for using the cluster procedure. Res Dev Disabil 30:426–432.CrossRefPubMedGoogle Scholar
  83. Upchurch M, Wehner JM (1988) Differences between inbred strains of mice in Morris water maze performance. Behav Genet 18:55–68CrossRefPubMedGoogle Scholar
  84. Uyanik M, Bumin G, Kayihan H (2003) Comparison of different therapy approaches in children with Down syndrome. Pediatr Int 45:68–73CrossRefPubMedGoogle Scholar
  85. Vicari S (2006) Motor development and neuropsychological patterns in persons with Down syndrome. Behav Genet 36:355–364CrossRefPubMedGoogle Scholar
  86. Vicari S, Carlesimo GA (2006). Short-term memory deficits are not uniform in Down and Williams syndromes. Neuropsychol Rev 16:87–94.CrossRefPubMedGoogle Scholar
  87. Vis JC, Duffels MG, Winter MM, Weijerman ME, Cobben JM, Huisman SA, Mulder BJ (2009). Down syndrome: a cardiovascular perspective. J Int Disabil Res 53:419–425.CrossRefGoogle Scholar
  88. Volden PA, Wonder EL, Skor MN, Carmean CM, Patel FN, Ye H, Kocherginsky M, McClintock MK, Brady MJ, Conzen SD (2013). Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res 6:634–645.CrossRefGoogle Scholar
  89. Watanabe H, Fujiyama A, Hattori M, Taylor TD, Toyoda A, Kuroki Y, Noguchi H, BenKahla A, Lehrach H, Sudbrak R et al (2004) DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429:382–388CrossRefPubMedGoogle Scholar
  90. Wehner, JM, Radcliffe, RA (2004). Cued and contextual fear conditioning in mice. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al] Chap. 8, Unit 8 5 C.Google Scholar
  91. Wehner JM, Radcliffe RA, Rosmann ST, Christensen SC, Rasmussen DL, Fulker DW, Wiles M (1997) Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet 17:331–334CrossRefPubMedGoogle Scholar
  92. Weiss C, Disterhoft JF (2011) Exploring prefrontal cortical memory mechanisms with eyeblink conditioning. Behav Neurosci 125:318–326CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wikgren J, Nokia MS, Penttonen M (2010) Hippocampo-cerebellar theta band phase synchrony in rabbits. Neuroscience 165:1538–1545CrossRefPubMedGoogle Scholar
  94. Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, et al. (2010a). A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Human Mol Genet 19:2780–2791.Google Scholar
  95. Yu T, Liu C, Belichenko P, Clapcote SJ, Li S, Pao A, Kleschevnikov A, Bechard AR, Asrar S, Chen R et al (2010b) Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice. Brain Res 1366:162–171Google Scholar
  96. Zhang L, Meng K, Jiang X, Liu C, Pao A, Belichenko PV, Kleschevnikov AM, Josselyn S, Liang P, Ye P, et al. (2014). Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits. Human Mol Genet 23:578–589.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pierre L. Roubertoux
    • 1
    Email author
  • Nathalie Baril
    • 2
  • Pierre Cau
    • 1
    • 3
    • 4
  • Christophe Scajola
    • 1
  • Adeline Ghata
    • 1
  • Catherine Bartoli
    • 1
  • Patrice Bourgeois
    • 1
    • 3
  • Julie di Christofaro
    • 5
  • Sylvie Tordjman
    • 6
    • 7
  • Michèle Carlier
    • 8
  1. 1.Aix Marseille UniversityINSERM, UMR_S 910, GMGFMarseilleFrance
  2. 2.Department 3CAix Marseille University, CNRSMarseilleFrance
  3. 3.Department of Medical GeneticsAP-HM, Timone HospitalMarseilleFrance
  4. 4.Service de Biologie CellulaireAP-HM, Hôpital La TimoneMarseille Cedex 5France
  5. 5.Aix Marseille UniversityCNRS, EFS, ADESMarseilleFrance
  6. 6.Paris Descartes UniversityCNRS, LPPParisFrance
  7. 7.Rennes 1 UniversityPHUPEARennesFrance
  8. 8.Aix Marseille UniversityCNRS, LPCMarseilleFrance

Personalised recommendations