The Role of Genes and Environment in Degree of Partner Self-Similarity

Abstract

Choice of romantic partner is an enormously important component of human life, impacting almost every facet of day-to-day existence, however; the processes underlying this choice are remarkably complex and have so far been largely resistant to scientific explanation. One consistent finding is that, on average, members of romantic dyads tend to be more alike than would be expected by chance. Selecting for self-similarity is at least partially driven by phenotypic matching wherein couples share similar phenotypes, and preferences for a number of these traits are partly genetically influenced (e.g., education, height, social attitudes and religiosity). This suggests that genetically influenced preferences for self-similarity might contribute to phenotypic matching (and thus assortative mating), but it has never been studied in actual couples. In the present study, we use a large sample of twins to model sources of variation in self-similarity between partners. Biometrical modelling revealed that very little of the variation in the tendency to assortatively mate across 14 traits was due to genetic effects (7 %) or the shared environment of twins (0 %).

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Agrawal A, Heath A, Grant J, Pergadia M, Statham D, Bucholz K, Madden P (2006) Assortative mating for cigarette smoking and for alcohol consumption in female Australian twins and their spouses. Behav Genet 36(4):553–566. doi:10.1007/s10519-006-9081-8

    Article  PubMed  Google Scholar 

  2. Boker SM, Neale MC, Maes HH, Wilde MJ, Spiegel M, Brick TR, Fox J (2011) OpenMx: an open source extended structural equation modelling framework: Psychometrika

  3. Boomsma DI, Neale MC, Dolan CV (1999) A note on the power provided by sibships of sizes 2, 3, and 4 in genetic covariance odeling of a codominant QTL. Behav Genet 29(3):163–170

    Article  PubMed  Google Scholar 

  4. Boomsma DI, Saviouk V, Hottenga J-J, Distel MA, de Moor MHM, Vink JM, Willemsen G (2010) Genetic epidemiology of attention deficit hyperactivity disorder (ADHD Index) in adults (epidemiology of ADHD index). PLoS ONE 5(5):e10621. doi:10.1371/journal.pone.0010621

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105(943):201–211. doi:10.1086/282718

    Article  Google Scholar 

  6. Buunk AP, Park JH, Dubbs SL (2008) Parent-offspring conflict in mate preferences. Rev Gen Psychol 12(1):47–62. doi:10.1037/1089-2680.12.1.47

    Article  Google Scholar 

  7. Caspi A, Herbener ES, Ozer DJ (1992) Shared experiences and the similarity of personalities: a longitudinal study of married couples. J Pers Soc Psychol 62(2):281–291. doi:10.1037/0022-3514.62.2.281

    Article  PubMed  Google Scholar 

  8. Cloninger CR, Przybeck TR, Svrakic DM (1991) The tridimensional personality questionnaire: U.S. normative data. Psychol Rep 69(3):1047–1057

    Article  PubMed  Google Scholar 

  9. Crow JF, Felsenstein J (1982) The effect of assortative mating on the genetic composition of a population. Soc Biol 29(1–2):22–35

    PubMed  Google Scholar 

  10. Eastwick PW, Luchies LB, Finkel EJ, Hunt LL (2014) The predictive validity of ideal partner preferences: a review and meta-analysis. Psychol Bull 140(3):623–665. doi:10.1037/a0032432

    Article  PubMed  Google Scholar 

  11. Eysenck SBG, Eysenck HJ, Barrett P (1985) A revised version of the psychoticism scale. Personal Individ Differ 6(1):21–29. doi:10.1016/0191-8869(85)90026-1

    Article  Google Scholar 

  12. Feingold A (1988) Matching for attractiveness in romantic partners and same-sex friends: a meta-analysis and theoretical critique. Psychol Bull 104(2):226–235. doi:10.1037/0033-2909.104.2.226

    Article  Google Scholar 

  13. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat 21(4):607–611. doi:10.1214/aoms/1177729756

    Article  Google Scholar 

  14. Grant JD, Heath AC, Bucholz KK, Madden PAF, Agrawal A, Statham DJ, Martin NG (2007) Spousal concordance for alcohol dependence: evidence for assortative mating or spousal interaction effects? Alcohol Clin Exp Res 31(5):717–728. doi:10.1111/j.1530-0277.2007.00356.x

    Article  PubMed  Google Scholar 

  15. Hatemi PK, Hibbing JR, Medland SE, Keller MC, Alford JR, Smith KB, Eaves LJ (2010) Not by twins alone: using the extended family design to investigate genetic influence on political beliefs. Am J Polit Sci 54(3):798–814. doi:10.1111/j.1540-5907.2010.00461.x

    Article  Google Scholar 

  16. Heath AC, Eaves LJ (1985) Resolving the effects of phenotype and social background on mate selection. Behav Genet 15(1):15–30. doi:10.1007/BF01071929

    Article  PubMed  Google Scholar 

  17. Heath AC, Cloninger CR, Martin NG (1994) Testing a model for the genetic structure of personality: a comparison of the personality systems of Cloninger and Eysenck. J Pers Soc Psychol 66(4):762. doi:10.1037/0022-3514.66.4.762

    Article  PubMed  Google Scholar 

  18. IBM Corp. (2013). IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM Corp

  19. Keller MC, Medland SE, Duncan LE (2010) Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav Genet 40(3):377–393. doi:10.1007/s10519-009-9320-x

    Article  PubMed  Google Scholar 

  20. Keller MC, Garver-Apgar CE, Wright JC, Martin NG, Corley RP, Stallings MC, Zietsch BP (2013) The genetic correlation between height and IQ: shared genes or assortative mating? PLoS Genet. doi:10.1371/journal.pgen.1004329

    Google Scholar 

  21. Kendler KS, Myers J (2009) A developmental twin study of church attendance and alcohol and nicotine consumption: a model for analyzing the changing impact of genes and environment. Am J Psychiatry 166(10):1150–1155. doi:10.1176/appi.ajp.2009.09020182

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klohnen EC, Mendelsohn GA (1998) Partner selection for personality characteristics: a couple-centered approach. Pers Soc Psychol Bull 24(3):268–278. doi:10.1177/0146167298243004

    Article  Google Scholar 

  23. Koenig LB, McGue M, Iacono WG (2009) Rearing environmental influences on religiousness: an investigation of adolescent adoptees. Personal Individ Differ 47(6):652–656. doi:10.1016/j.paid.2009.06.003

    Article  Google Scholar 

  24. Krueger R, Moffitt T, Caspi A, Bleske A, Silva P (1998) Assortative mating for antisocial behavior: developmental and methodological implications. Behav Genet 28(3):173–186. doi:10.1023/A:1021419013124

    Article  PubMed  Google Scholar 

  25. Kurzban R, Weeden J (2005) HurryDate: mate preferences in action. Evolut Hum Behav 26(3):227–244. doi:10.1016/j.evolhumbehav.2004.08.012

    Article  Google Scholar 

  26. Lande R (1977) The influence of the mating system on the maintenance of genetic variability in polygenic characters. Genetics 86(2):485–498

    PubMed  PubMed Central  Google Scholar 

  27. Li NP, Meltzer AL (2015) The validity of sex-differentiated mate preferences: reconciling the seemingly conflicting evidence. Evolut Behav Sci 9(2):89–106. doi:10.1037/ebs0000036

    Article  Google Scholar 

  28. Li NP, Yong JC, Tov W, Sng O, Fletcher GJO, Valentine KA, Balliet D (2013) Mate preferences do predict attraction and choices in the early stages of mate selection. J Pers Soc Psychol 105(5):757–776. doi:10.1037/a0033777

    Article  PubMed  Google Scholar 

  29. Lykken DT, Tellegen A (1993) Is human mating adventitious or the result of lawful choice? A twin study of mate selection. J Pers Soc Psychol 65(1):56

    Article  PubMed  Google Scholar 

  30. Martin NG, Eaves LJ, Heath AC, Jardine R, Feingold LM, Eysenck HJ (1986) Transmission of social attitudes. Proc Natl Acad Sci USA 83(12):4364–4368. doi:10.1073/pnas.83.12.4364

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mascie-Taylor CGN (1989) Spouse similarity for IQ and personality and convergence. Behav Genet 19(2):223–227

    Article  PubMed  Google Scholar 

  32. Mascie-Taylor CGN, Vandenberg SG (1988) Assortative mating for IQ and personality due to propinquity and personal preference. Behav Genet 18(3):339–345. doi:10.1007/BF01260934

    Article  PubMed  Google Scholar 

  33. Nagoshi CT, Johnson RC, Ahern FM (1987) Phenotypic assortative mating vs. social homogamy among Japanese and Chinese parents in the Hawaii Family Study of Cognition. Behav Genet 17(5):477–485. doi:10.1007/BF01073114

    Article  PubMed  Google Scholar 

  34. Neale MC, Cardon LC (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, Boston

    Google Scholar 

  35. Nordsletten AE, Larsson H, Crowley JJ, Almqvist C, Lichtenstein P, Mataix-Cols D (2016) Patterns of nonrandom mating within and across 11 major psychiatric disorders. 73(4)

  36. Penke L, Todd PM, Lenton AP, Fasolo B (2007) How self-assessments can guide human mating decisions. In: Geher G, Miller GF (eds) Mating intelligence: sex, relationships, and the mind’s reproductive system. Erlbaum, Mahwah, pp 37–75

    Google Scholar 

  37. Plomin R, DeFries JC, Roberts MK (1977) Assortative mating by unwed biological parents of adopted children. Science 196(4288):449–450. doi:10.1126/science.850790

    Article  PubMed  Google Scholar 

  38. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet Adv Online Publ. doi:10.1038/ng.3285

    Google Scholar 

  39. Posner SF, Baker L, Heath A, Martin NG (1996) Social contact, social attitudes, and twin similarity. Behav Genet 26(2):123–133. doi:10.1007/BF02359890

    Article  PubMed  Google Scholar 

  40. Posthuma D, Boomsmsa DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30:147–158

    Article  PubMed  Google Scholar 

  41. Posthuma D, Beem AL, de Geus EJC, van Baal GCM, von Hjelmborg JB, Iachine I, Boomsma DI (2003) Theory and practice in quantitative genetics. Twin Res 6(5):361–376. doi:10.1375/136905203770326367

    Article  PubMed  Google Scholar 

  42. Price RA, Vandenberg SG (1980) Spouse similarity in American and Swedish couples. Behav Genet 10(1):59–71. doi:10.1007/BF01067319

    Article  PubMed  Google Scholar 

  43. Qvarnstrom A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nat 441(7089):84–86. doi:http://www.nature.com/nature/journal/v441/n7089/suppinfo/nature04564_S1.html

  44. R Core Team (2014) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

  45. Reynolds CA, Baker LA, Pedersen NL (1996) Models of spouse similarity: applications to fluid ability measured in twins and their spouses. Behav Genet 26(2):73–88. doi:10.1007/BF02359886

    Article  PubMed  Google Scholar 

  46. Reynolds CA, Baker LA, Pedersen NL (2000) Multivariate models of mixed assortment: phenotypic assortment and social homogamy for education and fluid ability. Behav Genet 30(6):455–476. doi:10.1023/A:1010250818089

    Article  PubMed  Google Scholar 

  47. Schwartz CR (2013) Trends and variation in assortative mating: causes and consequences. Ann Rev Sociol 39:451–470. doi:10.1146/annurev-soc-071312-145544

    Article  Google Scholar 

  48. Verweij KJH, Burri AV, Zietsch BP (2012) Evidence for genetic variation in human mate preferences for sexually dimorphic physical traits. PLoS ONE 7(11):e49294. doi:10.1371/journal.pone.0049294

    Article  PubMed  PubMed Central  Google Scholar 

  49. Verweij KJH, Burri AV, Zietsch BP (2014) Testing the prediction from sexual selection of a positive genetic correlation between human mate preferences and corresponding traits. Evolut Hum Behav 35(6):497–501. doi:10.1016/j.evolhumbehav.2014.06.009

    Article  Google Scholar 

  50. Watson D, Klohnen EC, Casillas A, Nus Simms E, Haig J, Berry DS (2004) Match makers and deal breakers: analyses of assortative mating in newlywed couples. J Pers 72(5):1029–1068. doi:10.1111/j.0022-3506.2004.00289.x

    Article  PubMed  Google Scholar 

  51. Wilson SR (1973) The correlation between relatives under the multifactorial model with assortative mating. Ann Hum Genet 37(2):189–204. doi:10.1111/j.1469-1809.1973.tb01826.x

    Article  PubMed  Google Scholar 

  52. Wright S (1921) Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6(2):144–161

    PubMed  PubMed Central  Google Scholar 

  53. Zietsch BP, Verweij KJH, Heath AC, Martin NG (2011) Variation in human mate choice: simultaneously investigating heritability, parental influence, sexual imprinting and assortative mating. Am Nat 177(5):605–616. doi:10.1086/659629

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zietsch BP, Verweij KJH, Burri AV (2012) Heritability of preferences for multiple cues of mate quality in humans. Evolution 66:1762–1772

    Article  PubMed  Google Scholar 

  55. Zietsch BP, Lee AJ, Sherlock JM, Jern P (2015) Variation in women’s facial masculinity preference is better explained by genetic differences than by previously identified context-dependent effects. Psychol Sci. doi:10.1177/0956797615591770

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by joint grants from the National Institutes of Health (Grant Numbers: AA07535, AA07728, AA10249, AA11998, MH31392) and the National Health and Medical Research Council (Australia, Grant Numbers: 941177 and 971232). James M. Sherlock is supported by an Australian Postgraduate Award. We also wish to thank Drew Bailey for integral input in developing a measure of the heritability of assortative mating.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to James M. Sherlock or Brendan P. Zietsch.

Ethics declarations

Conflict of Interest

James M. Sherlock, Karin J. H. Verweij, Sean C. Murphy, Andrew C. Heath, Nicholas G. Martin, Brendan P. Zietsch declare no conflict of interests.

Ethical Approval

All research was conducted in accordance with the guidelines of the Queensland Institute of Medical Research Ethics Committee with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Edited by Carol Van Hulle.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sherlock, J.M., Verweij, K.J.H., Murphy, S.C. et al. The Role of Genes and Environment in Degree of Partner Self-Similarity. Behav Genet 47, 25–35 (2017). https://doi.org/10.1007/s10519-016-9808-0

Download citation

Keywords

  • Assortative mating
  • Quantitative genetics
  • Mate choice
  • Self-similarity
  • Romantic preference