Advertisement

Behavior Genetics

, Volume 46, Issue 2, pp 242–251 | Cite as

Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee

  • Malgorzata Lagisz
  • Alison R. Mercer
  • Charlotte de Mouzon
  • Luana L. S. Santos
  • Shinichi Nakagawa
Original Research

Abstract

Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine—and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.

Keywords

Olfactory conditioning Learning Memory Candidate genes Polymorphism Pleiotropy 

Notes

Acknowledgments

We thank Jamie McQuillan, David Jarriault, Kim Garrett and Murray McKenzie for technical assistance with the project. LLSS was supported by a University of Otago Research Grant.

Compliance with ethical standards

Conflicts of interest

Malgorzata Lagisz, Alison R. Mercer, Charlotte de Mouzon, Luana L. S. Santos and Shinichi Nakagawa declare that they have no conflicts of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. For this type of study formal consent is not required.

Supplementary material

10519_2015_9749_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2398 kb)

References

  1. Abrieux A, Debernard S, Maria A et al (2013) Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One 8:e72785PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ammons AD, Hunt GJ (2008) Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees. Behav Genet 38:531–553CrossRefPubMedGoogle Scholar
  3. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296CrossRefPubMedGoogle Scholar
  4. Balfanz S, Jordan N, Langenstück T et al (2014) Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J Neurochem 129:284–296CrossRefPubMedGoogle Scholar
  5. Barron AB, Søvik E, Cornish JL (2010) The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 4:163PubMedCentralCrossRefPubMedGoogle Scholar
  6. Beggs KT, Hamilton IS, Kurshan PT et al (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem Mol Biol 35:873–882CrossRefPubMedGoogle Scholar
  7. Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL (2012) Dopamine is required for learning and forgetting in Drosophila. Neuron 74:530–542PubMedCentralCrossRefPubMedGoogle Scholar
  8. Blenau W, Erber J, Baumann A (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J Neurochem 70:15–23CrossRefPubMedGoogle Scholar
  9. Buckland PR (2006) The importance and identification of regulatory polymorphisms and their mechanisms of action. Biochim Biophys Acta 1762:17–28CrossRefPubMedGoogle Scholar
  10. Burke CJ, Huetteroth W, Owald D et al (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437PubMedCentralCrossRefPubMedGoogle Scholar
  11. Butcher LM, Kennedy JK, Plomin R (2006) Generalist genes and cognitive neuroscience. Curr Opin Neurobiol 16:145–151CrossRefPubMedGoogle Scholar
  12. Chen A, Ng F, Lebestky T et al (2013) Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 193:159–176PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, HillsdaleGoogle Scholar
  14. Delker C, Quint M (2011) Expression level polymorphisms: heritable traits shaping natural variation. Trends Plant Sci 16:481–488PubMedGoogle Scholar
  15. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Dukas R (2004) Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst 35:347–374CrossRefGoogle Scholar
  17. Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160CrossRefPubMedGoogle Scholar
  18. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380PubMedGoogle Scholar
  19. Geddes LH, McQuillan HJ, Aiken A et al (2013) Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. Learn Mem Cold Spring Harb N 20:399–409CrossRefGoogle Scholar
  20. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349CrossRefPubMedGoogle Scholar
  21. Gorlov IP, Gorlova OY, Sunyaev SR et al (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82:100–112PubMedCentralCrossRefPubMedGoogle Scholar
  22. Grohmann L, Blenau W, Erber J et al (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86:725–735CrossRefPubMedGoogle Scholar
  23. Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci 20:245–252CrossRefPubMedGoogle Scholar
  24. Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630PubMedGoogle Scholar
  25. Harpur BA, Kent CF, Molodtsova D et al (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci 111:2614–2619PubMedCentralCrossRefPubMedGoogle Scholar
  26. Humphries MA, Mustard JA, Hunter SJ et al (2003) Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J Neurobiol 55:315–330CrossRefPubMedGoogle Scholar
  27. Inagaki HK, Ben-Tabou de-Leon S, Wong AM et al (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148:583–595PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ishimoto H, Sakai T, Kitamoto T (2009) Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. Proc Natl Acad Sci USA 106:6381–6386PubMedCentralCrossRefPubMedGoogle Scholar
  29. Ishimoto H, Wang Z, Rao Y et al (2013) A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain. PLoS Genet 9:e1003843PubMedCentralCrossRefPubMedGoogle Scholar
  30. Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070. doi: 10.1093/bioinformatics/btr521 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kim Y-C, Lee H-G, Han K-A (2007) D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27:7640–7647CrossRefPubMedGoogle Scholar
  32. Kim Y-C, Lee H-G, Lim J, Han K-A (2013) Appetitive learning requires the alpha1-like octopamine receptor OAMB in the Drosophila mushroom body neurons. J Neurosci 33:1672–1677CrossRefPubMedGoogle Scholar
  33. Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568PubMedGoogle Scholar
  34. Liu C, Plaçais P-Y, Yamagata N et al (2012) A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516CrossRefPubMedGoogle Scholar
  35. Lovell SC (2006) Gene function and molecular evolution. Evolutionary genetics: concepts and case studies, 1st edn. Oxford University Press, Oxford, pp 193–210Google Scholar
  36. McQuillan HJ, Nakagawa S, Mercer AR (2012) Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes. Learn Mem 19:151–158CrossRefPubMedGoogle Scholar
  37. Menzel R, Giurfa M (2006) Dimensions of cognition in an insect, the honeybee. Behav Cogn Neurosci Rev 5:24–40CrossRefPubMedGoogle Scholar
  38. Menzel R, Müller U (2001) Neurobiology. Learning from a fly’s memory. Nature 411:433–434CrossRefPubMedGoogle Scholar
  39. Molodtsova D, Harpur BA, Kent CF et al (2014) Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviors. Front Genet 5:431PubMedCentralCrossRefPubMedGoogle Scholar
  40. Müller U (2006) Memory: cellular and molecular networks. Cell Mol Life Sci 63:961–962CrossRefGoogle Scholar
  41. Mustard JA, Blenau W, Hamilton IS et al (2003) Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity. Brain Res Mol Brain Res 113:67–77CrossRefPubMedGoogle Scholar
  42. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045CrossRefGoogle Scholar
  43. Núñez J, Maldonado H, Miralto A, Balderrama N (1983) The stinging response of the honeybee: effects of morphine, naloxone and some opioid peptides. Pharmacol Biochem Behav 19:921–924CrossRefPubMedGoogle Scholar
  44. O’Reilly PF, Hoggart CJ, Pomyen Y et al (2012) MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One 7:e34861PubMedCentralCrossRefPubMedGoogle Scholar
  45. Oxley PR, Spivak M, Oldroyd BP (2010) Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol Ecol 19:1452–1461CrossRefPubMedGoogle Scholar
  46. Rao DC (2008) An overview of the genetic dissection of complex traits. Adv Genet 60:3–34CrossRefPubMedGoogle Scholar
  47. Riemensperger T, Völler T, Stock P et al (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol CB 15:1953–1960CrossRefPubMedGoogle Scholar
  48. Roussel E, Carcaud J, Sandoz J-C, Giurfa M (2009) Reappraising social insect behavior through aversive responsiveness and learning. PLoS One 4:e4197PubMedCentralCrossRefPubMedGoogle Scholar
  49. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644PubMedCentralCrossRefPubMedGoogle Scholar
  50. Schwaerzel M, Monastirioti M, Scholz H et al (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502PubMedGoogle Scholar
  51. Sinnwell JP, Schaid DJ (2005) haplo.stats: statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous. R package version 1.6.3Google Scholar
  52. Srivastava DP, Yu EJ, Kennedy K et al (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci Off J Soc Neurosci 25:6145–6155CrossRefGoogle Scholar
  53. Tsuruda JM, Harris JW, Bourgeois L et al (2012) High-resolution linkage analyses to identify genes that influence varroa sensitive hygiene behavior in honey bees. PLoS One 7:e48276PubMedCentralCrossRefPubMedGoogle Scholar
  54. Vergoz V, McQuillan HJ, Geddes LH et al (2009) Peripheral modulation of worker bee responses to queen mandibular pheromone. Proc Natl Acad Sci 106:20930–20935PubMedCentralCrossRefPubMedGoogle Scholar
  55. Vergoz V, Roussel E, Sandoz J-C, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288PubMedCentralCrossRefPubMedGoogle Scholar
  56. Wallberg A, Han F, Wellhagen G et al (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088CrossRefPubMedGoogle Scholar
  57. Wray NR, Yang J, Hayes BJ et al (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 14:507–515PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Malgorzata Lagisz
    • 1
    • 2
  • Alison R. Mercer
    • 1
  • Charlotte de Mouzon
    • 1
  • Luana L. S. Santos
    • 1
  • Shinichi Nakagawa
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of OtagoOtago, DunedinNew Zealand
  2. 2.School of BEES, Evolution & Ecology Research CentreThe University of New South Wales, UNSW SydneySydneyAustralia

Personalised recommendations