Advertisement

Behavior Genetics

, Volume 44, Issue 5, pp 487–497 | Cite as

Simple Sequence Repeats in the National Longitudinal Study of Adolescent Health: An Ethnically Diverse Resource for Genetic Analysis of Health and Behavior

  • Brett C. HaberstickEmail author
  • Andrew Smolen
  • Gary L. Stetler
  • Joyce W. Tabor
  • Taylor Roy
  • H. Rick Casey
  • Alicia Pardo
  • Forest Roy
  • Lauren A. Ryals
  • Christina Hewitt
  • Eric A. Whitsel
  • Carolyn T. Halpern
  • Ley A. Killeya-Jones
  • Jeffrey M. Lessem
  • John K. Hewitt
  • Kathleen Mullan Harris
Original Research

Abstract

Simple sequence repeats (SSRs) are one of the earliest available forms of genetic variation available for analysis and have been utilized in studies of neurological, behavioral, and health phenotypes. Although findings from these studies have been suggestive, their interpretation has been complicated by a variety of factors including, among others, limited power due to small sample sizes. The current report details the availability, diversity, and allele and genotype frequencies of six commonly examined SSRs in the ethnically diverse, population-based National Longitudinal Study of Adolescent Health. A total of 106,743 genotypes were generated across 15,140 participants that included four microsatellites and two di-nucleotide repeats in three dopamine genes (DAT1, DRD4, DRD5), the serotonin transporter, and monoamine oxidase A. Allele and genotype frequencies showed a complex pattern and differed significantly between populations. For both di-nucleotide repeats we observed a greater allelic diversity than previously reported. The availability of these six SSRs in a large, ethnically diverse sample with extensive environmental measures assessed longitudinally offers a unique resource for researchers interested in health and behavior.

Keywords

DRD4 DAT1 5HTTLPR MAOA DRD5 Add Health 

Notes

Acknowledgments

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgement is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (www.cpc.unc.edu/addhealth). No direct support was received from grant PO1-HD31921 for this analysis.

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all participants included in this study.

Supplementary material

10519_2014_9662_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 119 kb)

References

  1. Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccrini C, Earl HM, Pharoh PPD, Dunning AM, Caldas C (2012) Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genom 5:19CrossRefGoogle Scholar
  2. Anchordoquy HC, McGeary C, Liu L, Krauter KS, Smolen A (2003) Genotyping of three candidate genes after whole-genome preamplification of DNA collected from buccal cells. Behav Genet 33:73–78PubMedCrossRefGoogle Scholar
  3. Bhanglae TR, Rieder MJ, Livingston RJ, Nickerson DA (2005) Comprehensive identification and characterization of diallelic insertion–deletion polymorphisms in 330 human candidate genes. Hum Mol Genet 14(1):59–69CrossRefGoogle Scholar
  4. Black GCM, Chen ZY, Craig IW, Powell JF (1991) Dinucleotide repeat polymorphism at the MAOA locus. Nucleic Acids Res 19:689PubMedCentralPubMedGoogle Scholar
  5. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854PubMedCrossRefGoogle Scholar
  6. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389PubMedCrossRefGoogle Scholar
  7. Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK (1996) The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum Genet 98:91–101PubMedCrossRefGoogle Scholar
  8. Don RH, Cox RT, Wainwright BJ, Baker K, Mattick JS (1992) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefGoogle Scholar
  9. Durbin RM, Abecassis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation form population-scale sequencing. Nature 467:1061–107310PubMedCrossRefGoogle Scholar
  10. Eichler EE (2006) Widening the spectrum of human genetic variation. Nat Genet 38(1):9–11PubMedCrossRefGoogle Scholar
  11. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445PubMedCrossRefGoogle Scholar
  12. Fondon JW, Hammack EAD, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31(7):328–334PubMedCrossRefGoogle Scholar
  13. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenetics J 1:152–156CrossRefGoogle Scholar
  14. Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073PubMedCrossRefGoogle Scholar
  15. Hamada H, Petrino MG, Kakunaga T, Seldman M, Stollar BD (1984) Enhanced gene expression by the poly(dT-dG)-poly(dC-dA) sequence. Mol Cell Biol 4:2622–2630PubMedCentralPubMedGoogle Scholar
  16. Harris KM (2012) Design features of Add Health. URL: www.cpc.unc.edu/projects/addhealth/guides/DesignPaperWIIV.pdf
  17. Harris KM, Halpern CT, Smolen A, Haberstick BC (2006) The National Longitudinal Study of Adolescent Health (Add Health) twin data. Twin Res Hum Genet 9(6):988–997PubMedCrossRefGoogle Scholar
  18. Harris KM, Halpern CT, Haberstick BC, Smolen A (2013) The National Longitudinal Study of Adolescent Health (Add Health) sibling pairs data. Twin Res Hum Genet 16(1):391–398PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hu X, Oroszi G, Chun J, Smith TL, Goldman D, Schuckit MA (2005) An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 29:8–16PubMedCrossRefGoogle Scholar
  20. Hu X, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K, Arnold PD, Richter MA, Kennedy JL, Murphy DL, Goldman D (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78:815–826PubMedCentralPubMedCrossRefGoogle Scholar
  21. Koni AC, Scott RA, Wang G, Bailey ME, Peplies J, Bamann K, Pitsilladis YP, IDEFICS Consortium (2011) DNA yield and quality of saliva samples and suitability for large-scale epidemiological studies in children. Int J Obesity 35:S113–S118CrossRefGoogle Scholar
  22. Jeffreys AJ (1987) Highly variable minisatellite and DNA fingerprints. Biochem Soc Trans 15(3):309–317PubMedGoogle Scholar
  23. Kang AM, Palmatier MA, Kidd KK (1999) Global variation of a 4-bp VNTR in the 3″-untranslated region of the dopamine transporter gene (SLC6A3). Bio Psychiatry 46:151–160CrossRefGoogle Scholar
  24. Kashi Y, King DG, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78PubMedCrossRefGoogle Scholar
  25. King DG, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavour 21(1):36–40CrossRefGoogle Scholar
  26. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  27. McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM (2006) Common deletion polymorphisms in the human genome. Nat Genet 38:86–92PubMedCrossRefGoogle Scholar
  28. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard S, Devin SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1181–1190CrossRefGoogle Scholar
  29. Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar Aa, Kemeza DM, Strassler DS, Ponting CP, Webber C, Devine SE (2011) Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 21:830–910PubMedCentralPubMedCrossRefGoogle Scholar
  30. Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, Ananda G, Howie B, Karczewski KJ, Smith KS, Anaya V, Richardson R, Davis J, 1000 Genomes Project Consortium, MacArthur DG, Sidow A, Luret L, Gerstein M, Makova KD, Marchini J, McVean G, Lunter G (2013) The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Res 23:749–761PubMedCentralPubMedCrossRefGoogle Scholar
  31. Murdoch JD, Speed WC, Pakstis AJ, Heffelfinger CE, Kidd KK (2013) Worldwide population variation and haplotype analysis at the serotonin transporter gene SLC6A4 and implication for association studies. Biol Psychiat 74(12):879–889Google Scholar
  32. Nakamura Y, Koyama Matsushima M (1998) VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J Hum Genet 43:149–152PubMedCrossRefGoogle Scholar
  33. Nemoda Z, Horvat-Gordon M, Fortunato CK, Beltzer EK, Scholl JL, Granger DA (2011) Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples. BMC Res Methodol 11:170CrossRefGoogle Scholar
  34. Ng DPK, Koh D, Choo S, Chia KS (2006) Saliva as a viable alternative source of human genomic DNA in genetic epidemiology. Clin Chim Acta 367:82–85CrossRefGoogle Scholar
  35. Nunes AP, Oliveria IO, Santos BR, Millech C, Silva LP, Gonzalez DA, Hallal PC, Menezes AMB, Araujo CL, Barros FC (2012) Quality of DNA extracted from saliva samples collected with Oragene DNA self-collection. BMC Med Res Methodol 12:65PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA (2009) Sequence determination of human microsatellite variability. BMC Genom 10:612CrossRefGoogle Scholar
  37. Pulford DJ, Mosteller M, Briley JD, Johansson KW, Nelsen AJ (2013) Saliva sampling in global clinical studies: the impact of low sampling volume on performance of DNA in downstream genotyping experiments. BMC Med Genet 6:20Google Scholar
  38. Quinque D, Kittler R, Kayser M, Stoneking M, Nasidze I (2006) Evaluation of saliva as a source of human DNA for population and association studies. Anal Biochem 353:272–277PubMedCrossRefGoogle Scholar
  39. Rogers NL, Cole SA, Lan HC, Crossa A, Demerath EW (2007) New saliva DNA collection method compared to buccal cell collection techniques for epidemiological studies. Am J Hum Biol 19:319–326PubMedCentralPubMedCrossRefGoogle Scholar
  40. Rylander-Rudqvist T, Hakansson N, Tybring G, Wolk A (2006) Quality and quantity of saliva DNA obtained from the self-administered Oragene method—A pilot study on the cohort or Swedish men. Cancer Epidemiol Biomarkers Prev 15:1742–1745PubMedCrossRefGoogle Scholar
  41. Shen H, Li J, Zhang J, Xu C, Jiang Y, Wu Z, Zhao F, Liao L, Chen J, Lin Y, Tian Q, Papasian CJ, Deng HW (2013) Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians. PLoS One 8(4):e59494PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sherrington R, Baljinder M, Attwood J, Kalsi G, Curtis D, Buetow K, Povey S, Gurling H (1993) Cloning of the human dopamine D5 receptor gene and identification of a highly polymorphic microsatellite for the DRD5 locus that shows tight linkage to the chromosome 4p reference marker RAF1P1. Genomics 18:423–425PubMedCrossRefGoogle Scholar
  43. Smolen A, Whitsel EA, Tabor J, Killeya-Jones LA, Cuthbertson CC, Hussey JM, Halpern CT, Harris KM (2013) Add Health Wave IV documentation: Candidate Genes, 2013Google Scholar
  44. Vanyukov MM, Moss HB, Yu LM, Deka R (1995) A dinucleotide repeat polymorphism at the gene for monoamine oxidase A and measures of aggressiveness. Psychiatry Res 59:35–41PubMedCrossRefGoogle Scholar
  45. Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71:854–862PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL (2006) Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5HTTLPR and rs25531. Mol Psychiatry 11:224–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brett C. Haberstick
    • 1
    Email author
  • Andrew Smolen
    • 1
  • Gary L. Stetler
    • 1
  • Joyce W. Tabor
    • 2
  • Taylor Roy
    • 1
  • H. Rick Casey
    • 1
  • Alicia Pardo
    • 1
  • Forest Roy
    • 1
  • Lauren A. Ryals
    • 1
  • Christina Hewitt
    • 1
  • Eric A. Whitsel
    • 4
    • 5
  • Carolyn T. Halpern
    • 2
    • 3
  • Ley A. Killeya-Jones
    • 2
  • Jeffrey M. Lessem
    • 1
  • John K. Hewitt
    • 1
  • Kathleen Mullan Harris
    • 2
    • 6
  1. 1.Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderUSA
  2. 2.Carolina Population CenterUniversity of North CarolinaChapel HillUSA
  3. 3.Department of Maternal and Child Health, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  4. 4.Department of Epidemiology, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  5. 5.Department of Medicine, School of MedicineUniversity of North CarolinaChapel HillUSA
  6. 6.Department of SociologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations