Behavior Genetics

, Volume 44, Issue 5, pp 427–444 | Cite as

Candidate Genes for Aggression and Antisocial Behavior: A Meta-analysis of Association Studies of the 5HTTLPR and MAOA-uVNTR

  • Courtney A. FicksEmail author
  • Irwin D. Waldman


Variation in central serotonin levels due to genetic mutations or experimental modifications has been associated with the manifestation of aggression in humans and animals. Many studies have examined whether common variants in serotonergic genes are implicated in aggressive or antisocial behaviors (ASB) in human samples. The two most commonly studied polymorphisms have been the serotonin transporter linked polymorphic region of the serotonin transporter gene (5HTTLPR) and the 30 base pair variable number of tandem repeats of the monoamine oxidase A gene (MAOA-uVNTR). Despite the aforementioned theoretical justification for these polymorphisms, findings across studies have been mixed and are thus difficult to interpret. A meta-analysis of associations of the 5HTTLPR and MAOA-uVNTR with ASB was conducted to determine: (1) the overall magnitude of effects for each polymorphism, (2) the extent of heterogeneity in effect sizes across studies and the likelihood of publication bias, and (3) whether sample-level or study-level characteristics could explain observed heterogeneity across studies. Both the 5HTTLPR and the MAOA-uVNTR were significantly associated with ASB across studies. There was also significant and substantial heterogeneity in the effect sizes for both markers, but this heterogeneity was not explained by any sample-level or study-level characteristics examined. We did not find any evidence for publication bias across studies for the MAOA-uVNTR, but there was evidence for an oversampling of statistically significant effect sizes for the 5HTTLPR. These findings provide support for the modest role of common serotonergic variants in ASB. Implications regarding the role of serotonin in antisocial behavior and the conceptualization of antisocial and aggressive phenotypes are discussed.


Antisocial behavior Aggression Serotonin MAOA 5HTTLPR Meta-analysis 



This research was supported in part by training Grant T32 MH073525.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Supplementary material

10519_2014_9661_MOESM1_ESM.docx (6 kb)
Supplementary material 1 (DOCX 7 kb)


  1. Alia-Klein N, Goldstein RZ, Kriplani A, Logan J, Tomasi D, Williams B, Fowler JS (2008) Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 28(19):5099–5104. doi: 10.1523/JNEUROSCI.0925-08.2008 PubMedCentralPubMedGoogle Scholar
  2. Alia-Klein N, Goldstein RZ, Tomasi D, Woicik PA, Moeller SJ, Williams B, Volkow ND (2009) Neural mechanisms of anger regulation as a function of genetic risk for violence. Emotion 9(3):385–396. doi: 10.1037/a0015904 PubMedCentralPubMedGoogle Scholar
  3. American Psychiatric Association (APA) (2000) Diagnostic and statistical manual of mental disorders, 4th edn. APA, Washington D.CGoogle Scholar
  4. Angold A, Costello EJ, Erkanli A (1999) Comorbidity. J Child Psychol Psychiatry 40(1):57–87PubMedGoogle Scholar
  5. Aslund C, Nordquist N, Comasco E, Leppert J, Oreland L, Nilsson KW (2010) Maltreatment, MAOA, and delinquency: sex differences in gene–environment interaction in a large population-based cohort of adolescents. Behav Genet. doi: 10.1007/s10519-010-9356-y PubMedGoogle Scholar
  6. Baker LA, Jacobson KC, Raine A, Lozano DI, Bezdjian S (2007) Genetic and environmental bases of childhood antisocial behavior: a multi-informant twin study. J Abnorm Psychol 116(2):219–235. doi: 10.1037/0021-843X.116.2.219 PubMedCentralPubMedGoogle Scholar
  7. Beitchman JH, Mik HM, Ehtesham S, Douglas L, Kennedy JL (2004) MAOA and persistent, pervasive childhood aggression. Mol Psychiatry 9(6):546–547. doi: 10.1038/ PubMedGoogle Scholar
  8. Beitchman JH, Baldassarra L, Mik H, De Luca V, King N, Bender D, Ehtesham S, Kennedy JL (2006) Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am J Psychiatry 163(6):1103–1105. doi: 10.1176/appi.ajp.163.6.1103 PubMedGoogle Scholar
  9. Bergen SE, Gardner CO, Kendler KS (2007) Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta-analysis. Twin Res Hum Genet 10(3):423–433. doi: 10.1375/twin.10.3.423 PubMedGoogle Scholar
  10. Blair RJ (2010) Neuroimaging of psychopathy and antisocial behavior: a targeted review. Curr Psychiatry Rep 12(1):76–82. doi: 10.1007/s11920-009-0086-x PubMedCentralPubMedGoogle Scholar
  11. Borenstein M, Hedges L, Higgins J, Rothstein H (2005) Comprehensive meta-analysis Version 2Google Scholar
  12. Brody GH, Beach SR, Philibert RA, Chen YF, Murry VM (2009) Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: gene × environment hypotheses tested via a randomized prevention design. Child Dev 80(3):645–661. doi: 10.1111/j.1467-8624.2009.01288.x PubMedGoogle Scholar
  13. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580PubMedGoogle Scholar
  14. Burt SA, Neiderhiser JM (2009) Aggressive versus nonaggressive antisocial behavior: distinctive etiological moderation by age. Dev Psychol 45(4):1164–1176. doi: 10.1037/a0016130 PubMedGoogle Scholar
  15. Butovskaya ML, Vasilyev VA, Lazebny OE, Burkova VN, Kulikov AM, Mabulla A, Shibalev DV, Ryskov AP (2012) Aggression, digit ratio, and variation in the androgen receptor, serotonin transporter, and dopamine D4 receptor genes in African foragers: the Hadza. Behav Genet 42(4):647–662. doi: 10.1007/s10519-012-9533-2 PubMedGoogle Scholar
  16. Cadoret RJ, Langbehn D, Caspers K, Troughton EP, Yucuis R, Sandhu HK, Philibert R (2003) Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr Psychiatry 44(2):88–101. doi: 10.1053/comp.2003.50018S0010440X03000385 PubMedGoogle Scholar
  17. Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361(9357):598–604. doi: 10.1016/S0140-6736(03)12520-2 PubMedGoogle Scholar
  18. Carre JM, Murphy KR, Hariri AR (2013) What lies beneath the face of aggression? Soc Cogn Affect Neurosci 8(2):224–229. doi: 10.1093/scan/nsr096 PubMedCentralPubMedGoogle Scholar
  19. Carver CS, Johnson SL, Joormann J (2008) Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: what depression has in common with impulsive aggression. Psychol Bull 134(6):912–943. doi: 10.1037/a0013740 PubMedCentralPubMedGoogle Scholar
  20. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig I, Poulton R W (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854. doi: 10.1126/science.1072290297/5582/851 PubMedGoogle Scholar
  21. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389. doi: 10.1126/science.1083968 PubMedGoogle Scholar
  22. Cicchetti D, Rogosch FA, Thibodeau EL (2012) The effects of child maltreatment on early signs of antisocial behavior: genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Dev Psychopathol 24(3):907–928. doi: 10.1017/S0954579412000442 PubMedCentralPubMedGoogle Scholar
  23. Coccaro EF (1989) Central serotonin and impulsive aggression. Br J Psychiatry 155(Suppl 8):52–62Google Scholar
  24. Conway CC, Keenan-Miller D, Hammen C, Lind PA, Najman JM, Brennan PA (2012) Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. J Clin Child Adolesc Psychol 41(1):53–63. doi: 10.1080/15374416.2012.632351 PubMedCentralPubMedGoogle Scholar
  25. Craig IW, Halton KE (2009) Genetics of human aggressive behaviour. Hum Genet 126(1):101–113. doi: 10.1007/s00439-009-0695-9 PubMedGoogle Scholar
  26. Cyders MA, Smith GT (2008) Emotion-based dispositions to rash action: positive and negative urgency. Psychol Bull 134(6):807–828. doi: 10.1037/a0013341 PubMedCentralPubMedGoogle Scholar
  27. Deater-Deckard K, Plomin R (1999) An adoption study of the etiology of teacher and parent reports of externalizing behavior problems in middle childhood. Child Dev 70(1):144–154PubMedGoogle Scholar
  28. Derringer J, Krueger RF, Irons DE, Iacono WG (2010) Harsh discipline, childhood sexual assault, and MAOA genotype: an investigation of main and interactive effects on diverse clinical externalizing outcomes. Behav Genet 40(5):639–648. doi: 10.1007/s10519-010-9358-9 PubMedCentralPubMedGoogle Scholar
  29. Ducci F, Enoch MA, Hodgkinson C, Xu K, Catena M, Robin RW, Goldman D (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiatry 13(3):334–347. doi: 10.1038/ PubMedGoogle Scholar
  30. Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 168(10):1041–1049. doi: 10.1176/appi.ajp.2011.11020191 PubMedCentralPubMedGoogle Scholar
  31. Edwards AC, Dodge KA, Latendresse SJ, Lansford JE, Bates JE, Pettit GS, Budde JP, Goate AM, Dick DM (2010) MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry 51(6):679–687. doi: 10.1111/j.1469-7610.2009.02196.x PubMedCentralPubMedGoogle Scholar
  32. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedCentralPubMedGoogle Scholar
  33. Eisenberger NI, Way BM, Taylor SE, Welch WT, Lieberman MD (2007) Understanding genetic risk for aggression: clues from the brain’s response to social exclusion. Biol Psychiatry 61(9):1100–1108. doi: 10.1016/j.biopsych.2006.08.007 PubMedGoogle Scholar
  34. Eley TC, Lichtenstein P, Stevenson J (1999) Sex differences in the etiology of aggressive and nonaggressive antisocial behavior: results from two twin studies. Child Dev 70(1):155–168PubMedGoogle Scholar
  35. Fairchild G, Van Goozen SH, Stollery SJ, Goodyer IM (2008) Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biol Psychiatry 63(3):279–285. doi: 10.1016/j.biopsych.2007.06.019 PubMedGoogle Scholar
  36. Ferguson CJ (2010) Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J Soc Psychol 150(2):160–180PubMedGoogle Scholar
  37. Fergusson DM, Boden JM, Horwood LJ, Miller AL, Kennedy MA (2011) MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198(6):457–463. doi: 10.1192/bjp.bp.110.086991 PubMedCentralPubMedGoogle Scholar
  38. Firk C, Siep N, Markus CR (2013) Serotonin transporter genotype modulates cognitive reappraisal of negative emotions: a functional magnetic resonance imaging study. Soc Cogn Affect Neurosci 8(3):247–258. doi: 10.1093/scan/nsr091 PubMedCentralPubMedGoogle Scholar
  39. Foley DL, Eaves LJ, Wormley B, Silberg JL, Maes HH, Kuhn J, Riley B (2004) Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Arch Gen Psychiatry 61(7):738–744. doi: 10.1001/archpsyc.61.7.73861/7/738 PubMedGoogle Scholar
  40. Frazzetto G, Di Lorenzo G, Carola V, Proietti L, Sokolowska E, Siracusano A, Gross C, Troisi A (2007) Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLoS One 2(5):486. doi: 10.1371/journal.pone.0000486 Google Scholar
  41. Gallardo-Pujol D, Andres-Pueyo A, Maydeu-Olivares A (2012) MAOA genotype, social exclusion and aggression: an experimental test of a gene-environment interaction. Genes Brain Behav 12(1):140–145. doi: 10.1111/j.1601-183X.2012.00868.x PubMedGoogle Scholar
  42. Garcia LF, Aluja A, Fibla J, Cuevas L, Garcia O (2010) Incremental effect for antisocial personality disorder genetic risk combining 5-HTTLPR and 5-HTTVNTR polymorphisms. Psychiatry Res 177(1–2):161–166. doi: 10.1016/j.psychres.2008.12.018 PubMedGoogle Scholar
  43. Gerra G, Garofano L, Castaldini L, Rovetto F, Zaimovic A, Moi G, Bussandri M, Donnini C (2005) Serotonin transporter promoter polymorphism genotype is associated with temperament, personality traits and illegal drugs use among adolescents. J Neural Transm 112(10):1397–1410. doi: 10.1007/s00702-004-0268-y PubMedGoogle Scholar
  44. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51–90. doi: 10.1007/s00439-009-0694-x PubMedGoogle Scholar
  45. Gonda X, Fountoulakis KN, Juhasz G, Rihmer Z, Lazary J, Laszik A, Akiskal HS, Bagdy G (2009) Association of the s allele of the 5-HTTLPR with neuroticism-related traits and temperaments in a psychiatrically healthy population. Eur Arch Psychiatry Clin Neurosci 259(2):106–113. doi: 10.1007/s00406-008-0842-7 PubMedGoogle Scholar
  46. Greenberg BD, Tolliver TJ, Huang SJ, Li Q, Bengel D, Murphy DL (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88(1):83–87PubMedGoogle Scholar
  47. Gregg TR, Siegel A (2001) Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25(1):91–140PubMedGoogle Scholar
  48. Grevet EH, Marques FZ, Salgado CA, Fischer AG, Kalil KL, Victor MM, Garcia CR, Sousa NO, Belmonte-de-Abreu P, Bau CH (2007) Serotonin transporter gene polymorphism and the phenotypic heterogeneity of adult ADHD. J Neural Transm 114(12):1631–1636. doi: 10.1007/s00702-007-0797-2 PubMedGoogle Scholar
  49. Guimaraes AP, Zeni C, Polanczyk G, Genro JP, Roman T, Rohde LA, Hutz MH (2009) MAOA is associated with methylphenidate improvement of oppositional symptoms in boys with attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 12(5):709–714. doi: 10.1017/S1461145709000212 PubMedGoogle Scholar
  50. Gunter TD, Vaughn MG, Philibert RA (2010) Behavioral genetics in antisocial spectrum disorders and psychopathy: a review of the recent literature. Behav Sci Law 28(2):148–173. doi: 10.1002/bsl.923 PubMedGoogle Scholar
  51. Guo G, Ou XM, Roettger M, Shih JC (2008) The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur J Hum Genet 16(5):626–634. doi: 10.1038/sj.ejhg.5201999 PubMedCentralPubMedGoogle Scholar
  52. Haberstick BC, Smolen A, Hewitt JK (2006) Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry 59(9):836–843. doi: 10.1016/j.biopsych.2005.10.008 PubMedGoogle Scholar
  53. Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88(5):586–598. doi: 10.1016/j.ajhg.2011.04.014 PubMedCentralPubMedGoogle Scholar
  54. Harbord RM, Higgins JPT (2008) Meta-regression in Stata. Stata J 8(4):493–519Google Scholar
  55. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297(5580):400–403. doi: 10.1126/science.1071829 PubMedGoogle Scholar
  56. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 161(7):1256–1263PubMedGoogle Scholar
  57. Hart D, Marmorstein NR (2009) Neighborhoods and genes and everything in between: understanding adolescent aggression in social and biological contexts. Dev Psychopathol 21(3):961–973. doi: 10.1017/S0954579409000510 PubMedCentralPubMedGoogle Scholar
  58. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66(6):2621–2624PubMedGoogle Scholar
  59. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi: 10.1002/sim.1186 PubMedGoogle Scholar
  60. Huizinga D, Haberstick BC, Smolen A, Menard S, Young SE, Corley RP, Stallings MC, Grotpeter J, Hewitt JK (2006) Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biol Psychiatry 60(7):677–683. doi: 10.1016/j.biopsych.2005.12.022 PubMedGoogle Scholar
  61. Jacob CP, Muller J, Schmidt M, Hohenberger K, Gutknecht L, Reif A, Schmidtke A, Mössner R, Lesch KP (2005) Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology 30(9):1711–1718. doi: 10.1038/sj.npp.1300737 PubMedGoogle Scholar
  62. Jacobson KC, Prescott CA, Kendler KS (2002) Sex differences in the genetic and environmental influences on the development of antisocial behavior. Dev Psychopathol 14(2):395–416PubMedGoogle Scholar
  63. Karg K, Burmeister M, Shedden K, Sen S (2011) The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 68(5):444–454. doi: 10.1001/archgenpsychiatry.2010.189 PubMedCentralPubMedGoogle Scholar
  64. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11(10):903–913. doi: 10.1038/ PubMedGoogle Scholar
  65. Lahey BB, Van Hulle CA, Singh AL, Waldman ID, Rathouz PJ (2011) Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Arch Gen Psychiatry 68(2):181–189. doi: 10.1001/archgenpsychiatry.2010.192 PubMedCentralPubMedGoogle Scholar
  66. Langley K, Payton A, Hamshere ML, Pay HM, Lawson DC, Turic D, Olier W, Thapar A (2003) No evidence of association of two 5HT transporter gene polymorphisms and attention deficit hyperactivity disorder. Psychiatr Genet 13(2):107–110. doi: 10.1097/01.ypg.0000056177.32550.a5 PubMedGoogle Scholar
  67. Lawson DC, Turic D, Langley K, Pay HM, Govan CF, Norton N, Hamshere ML, Owen MJ, O’Donovan MC, Thapar A (2003) Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 116B(1):84–89. doi: 10.1002/ajmg.b.10002 PubMedGoogle Scholar
  68. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531PubMedGoogle Scholar
  69. Levine T, Asada KJ, Carpenter C (2009) Sample sizes and effect sizes are negatively correlated in meta-analyses: evidence and implications of a publication bias against non-significant findings. Commun Monogr 76(3):286–302Google Scholar
  70. Liao DL, Hong CJ, Shih HL, Tsai SJ (2004) Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology 50(4):284–287. doi: 10.1159/000080953 PubMedGoogle Scholar
  71. Lipsey M, Wilson D (2001) Practical meta-analysis. Sage Publications Inc, Thousand OaksGoogle Scholar
  72. Lotrich FE, Pollock BG, Ferrell RE (2003) Serotonin transporter promoter polymorphism in African Americans : allele frequencies and implications for treatment. Am J Pharmacogenomics 3(2):145–147PubMedGoogle Scholar
  73. Lyons MJ, True WR, Eisen SA, Goldberg J, Meyer JM, Faraone SV, Eaves LJ, Tsuang MT (1995) Differential heritability of adult and juvenile antisocial traits. Arch Gen Psychiatry 52(11):906–915PubMedGoogle Scholar
  74. Lyons-Ruth K, Holmes BM, Sasvari-Szekely M, Ronai Z, Nemoda Z, Pauls D (2007) Serotonin transporter polymorphism and borderline or antisocial traits among low-income young adults. Psychiatr Genet 17(6):339–343. doi: 10.1097/YPG.0b013e3281ac237e PubMedCentralPubMedGoogle Scholar
  75. Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95(1):9–23.PubMedGoogle Scholar
  76. Marsh AA, Blair RJ (2008) Deficits in facial affect recognition among antisocial populations: a meta-analysis. Neurosci Biobehav Rev 32(3):454–465. doi: 10.1016/j.neubiorev.2007.08.003 PubMedCentralPubMedGoogle Scholar
  77. McClelland GH, Judd CM (1993) Statistical difficulties of detecting interactions and moderator effects. Psychol Bull 114(2):376–390PubMedGoogle Scholar
  78. McDermott R, Tingley D, Cowden J, Frazzetto G, Johnson DD (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Natl Acad Sci USA 106(7):2118–2123. doi: 10.1073/pnas.0808376106 PubMedCentralPubMedGoogle Scholar
  79. McGrath LM, Mustanski B, Metzger A, Pine DS, Kistner-Griffin E, Cook E, Wakschlag LS (2012) A latent modeling approach to genotype-phenotype relationships: maternal problem behavior clusters, prenatal smoking, and MAOA genotype. Arch Womens Ment Health 15(4):269–282. doi: 10.1007/s00737-012-0286-y PubMedCentralPubMedGoogle Scholar
  80. Merens W, Willem Van der Does AJ, Spinhoven P (2007) The effects of serotonin manipulations on emotional information processing and mood. J Affect Disord 103(1–3):43–62. doi:  10.1016/j.jad.2007.01.032
  81. Miles DR, Carey G (1997) Genetic and environmental architecture of human aggression. J Pers Soc Psychol 72(1):207–217PubMedGoogle Scholar
  82. Munafo MR, Stothart G, Flint J (2009) Bias in genetic association studies and impact factor. Mol Psychiatry 14(2):119–120. doi: 10.1038/mp.2008.77 PubMedGoogle Scholar
  83. Murphy SE, Norbury R, Godlewska BR, Cowen PJ, Mannie ZM, Harmer CJ, Munafo MR (2013) The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry 18(4):512–520. doi: 10.1038/mp.2012.19 PubMedGoogle Scholar
  84. Nobile M, Giorda R, Marino C, Carlet O, Pastore V, Vanzin L, Bellina M, Molteni M, Battaglia M (2007) Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev Psychopathol 19(4):1147–1160. doi: 10.1017/S0954579407000594 PubMedGoogle Scholar
  85. Nordquist N, Oreland L (2010) Serotonin, genetic variability, behaviour, and psychiatric disorders–a review. Ups J Med Sci 115(1):2–10. doi: 10.3109/03009730903573246 PubMedCentralPubMedGoogle Scholar
  86. Payer DE, Nurmi EL, Wilson SA, McCracken JT, London ED (2012) Effects of methamphetamine abuse and serotonin transporter gene variants on aggression and emotion-processing neurocircuitry. Transl Psychiatry 2:e80. doi: 10.1038/tp.2011.73 PubMedCentralPubMedGoogle Scholar
  87. Plomin R, Davis OS (2009) The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 50(1–2):63–71. doi: 10.1111/j.1469-7610.2008.01978.x PubMedCentralPubMedGoogle Scholar
  88. Prichard ZM, Jorm AF, Mackinnon A, Easteal S (2007) Association analysis of 15 polymorphisms within 10 candidate genes for antisocial behavioural traits. Psychiatr Genet 17(5):299–303. doi: 10.1097/YPG.0b013e32816ebc9e PubMedGoogle Scholar
  89. Prom-Wormley EC, Eaves LJ, Foley DL, Gardner CO, Archer KJ, Wormley BK, Maes HH, Riley BP, Silberg JL (2009) Monoamine oxidase A and childhood adversity as risk factors for conduct disorder in females. Psychol Med 39(4):579–590. doi: 10.1017/S0033291708004170 PubMedCentralPubMedGoogle Scholar
  90. Qian QJ, Liu J, Wang YF, Yang L, Guan LL, Faraone SV (2009) Attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominately inattentive type: evidence for an association with COMT but not MAOA in a Chinese sample. Behav Brain Funct 5:8. doi: 10.1186/1744-9081-5-8 PubMedCentralPubMedGoogle Scholar
  91. Reif A, Rosler M, Freitag CM, Schneider M, Eujen A, Kissling C, Wenzler D, Retz W (2007) Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology 32(11):2375–2383. doi: 10.1038/sj.npp.1301359 PubMedGoogle Scholar
  92. Retz W, Rosler M (2009) The relation of ADHD and violent aggression: what can we learn from epidemiological and genetic studies? Int J Law Psychiatry 32(4):235–243. doi: 10.1016/j.ijlp.2009.04.006 PubMedGoogle Scholar
  93. Retz W, Retz-Junginger P, Supprian T, Thome J, Rosler M (2004) Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav Sci Law 22(3):415–425. doi: 10.1002/bsl.589 PubMedGoogle Scholar
  94. Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 128(3):490–529PubMedGoogle Scholar
  95. Rhee SH, Waldman ID (2010) Genetic and environmental influences on aggression. In: Mikulincer M, Shaver PR (eds) Understanding and reducing aggression, violence, and their consequences. American Psychological Association, Washington, D.C.Google Scholar
  96. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301(23):2462–2471. doi: 10.1001/jama.2009.878 PubMedCentralPubMedGoogle Scholar
  97. Rothwell PM, Robertson G (1997) Meta-analyses of randomised controlled trials. Lancet 350(9085):1181–1182PubMedGoogle Scholar
  98. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103(3):273–279PubMedGoogle Scholar
  99. Sadeh N, Javdani S, Verona E (2013) Analysis of monoaminergic genes, childhood abuse, and dimensions of psychopathy. J Abnorm Psychol 122(1):167–179. doi: 10.1037/a0029866 PubMedGoogle Scholar
  100. Sakai JT, Young SE, Stallings MC, Timberlake D, Smolen A, Stetler GL, Crowley TJ (2006) Case-control and within-family tests for an association between conduct disorder and 5HTTLPR. Am J Med Genet B Neuropsychiatr Genet 141B(8):825–832. doi: 10.1002/ajmg.b.30278 PubMedGoogle Scholar
  101. Sakai JT, Boardman JD, Gelhorn HL, Smolen A, Corley RP, Huizinga D, Menard S, Hewitt JK, Stallings MC (2010) Using trajectory analyses to refine phenotype for genetic association: conduct problems and the serotonin transporter (5HTTLPR). Psychiatr Genet 20(5):199–206. doi: 10.1097/YPG.0b013e32833a20f1 PubMedCentralPubMedGoogle Scholar
  102. Silberg J, Rutter M, Meyer J, Maes H, Hewitt J, Simonoff E, Pickles A, Loeber R, Eaves L (1996) Genetic and environmental influences on the covariation between hyperactivity and conduct disturbance in juvenile twins. J Child Psychol Psychiatry 37(7):803–816PubMedGoogle Scholar
  103. Silberg JL, Rutter M, Tracy K, Maes HH, Eaves L (2007) Etiological heterogeneity in the development of antisocial behavior: the Virginia twin study of adolescent behavioral development and the young adult follow-up. Psychol Med 37(8):1193–1202. doi: 10.1017/S0033291707000293 PubMedCentralPubMedGoogle Scholar
  104. Simmons JP, Nelson LD, Simonsohn U (2011) False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci 22(11):1359–1366. doi: 10.1177/0956797611417632 PubMedGoogle Scholar
  105. Sjoberg RL, Ducci F, Barr CS, Newman TK, Dell’osso L, Virkkunen M, Goldman D (2008) A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33(2):425–430. doi: 10.1038/sj.npp.1301417 PubMedCentralPubMedGoogle Scholar
  106. STATA Statistical Software: Release 8 (2003) College Station, TX: Statacorp LPGoogle Scholar
  107. Thapar A, Harrington R, McGuffin P (2001) Examining the comorbidity of ADHD-related behaviours and conduct problems using a twin study design. Br J Psychiatry 179:224–229PubMedGoogle Scholar
  108. Verhoeven FE, Booij L, Kruijt AW, Cerit H, Antypa N, Does W (2012) The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression. Brain Behav 2(6):806–813. doi: 10.1002/brb3.96 PubMedCentralPubMedGoogle Scholar
  109. Verona E, Joiner TE, Johnson F, Bender TW (2006) Gender specific gene-environment interactions on laboratory-assessed aggression. Biol Psychol 71(1):33–41. doi: 10.1016/j.biopsycho.2005.02.001 PubMedGoogle Scholar
  110. Wahlsten D (1991) Sample size to detect a planned contrast and a one degree-of-freedom interaction effect. Psychol Bull 110(3):587–595Google Scholar
  111. Waldman ID, Rhee SH (2006) Genetic and environmental influences on psychopathy and antisocial behavior. In: Patrick CJ (ed) Handbook of psychopathy. The Guilford Press, New YorkGoogle Scholar
  112. Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, Kaufman J (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 65(5):417–424. doi: 10.1016/j.biopsych.2008.09.013 PubMedGoogle Scholar
  113. Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL (2006) Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Mol Psychiatry 11(3):224–226. doi: 10.1038/ PubMedGoogle Scholar
  114. Whyte A, Jessen T, Varney S, Carneiro AM (2013) Serotonin transporter and integrin beta 3 genes interact to modulate serotonin uptake in mouse brain. Neurochem Int. doi: 10.1016/j.neuint.2013.09.014 PubMedGoogle Scholar
  115. Widom CS, Brzustowicz LM (2006) MAOA and the “cycle of violence:” childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry 60(7):684–689. doi: 10.1016/j.biopsych.2006.03.039 PubMedGoogle Scholar
  116. Williams LM, Gatt JM, Kuan SA, Dobson-Stone C, Palmer DM, Paul RH, Song L, Costa PT, Schofield PR, Gordon E (2009) A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology 34(7):1797–1809. doi: 10.1038/npp.2009.1 PubMedGoogle Scholar
  117. Yeh MT, Coccaro EF, Jacobson KC (2010) Multivariate behavior genetic analyses of aggressive behavior subtypes. Behav Genet 40(5):603–617. doi: 10.1007/s10519-010-9363-z PubMedCentralPubMedGoogle Scholar
  118. Young SE, Smolen A, Hewitt JK, Haberstick BC, Stallings MC, Corley RP, Crowley TJ (2006) Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: failure to confirm in adolescent patients. Am J Psychiatry 163(6):1019–1025. doi: 10.1176/appi.ajp.163.6.1019 PubMedGoogle Scholar
  119. Zimmerman P, Mohr C, Spangler G (2009) Genetic and attachment influences on adolescents’ regulation of autonomy and aggressiveness. Child Psychol Psychiatry 50(11):1139–1147Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Psychology DepartmentEmory UniversityAtlantaUSA

Personalised recommendations