Advertisement

Behavior Genetics

, Volume 44, Issue 6, pp 549–577 | Cite as

Genes, Evolution and Intelligence

  • Thomas J. BouchardJr.
Original Research

Abstract

I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties—intelligence—is best explained by the near infinitesimal model of quantitative genetics.

Keywords

Intelligence Heritability Evolution g Factor Brain 

Notes

Conflict of interest

The author declares that he has no conflicts of interest.

References

  1. Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis” the brain and the digestive system in man and primate evolution. Curr Anthropol 36:199–221Google Scholar
  2. Albert DJ (2011) What’s on the mind of a jellyfish? A review of behavioral observations on Aurelia sp. jellyfish. Neurosci Biobehav Rev 35:474–482PubMedGoogle Scholar
  3. Allman JM (2000) Evolving brains. Scientific American Library, Distributed by WH Freeman, New YorkGoogle Scholar
  4. Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105(38):14615–14619. doi: 10.1073/pnas.0803652105 PubMedCentralPubMedGoogle Scholar
  5. Amiel JJ, Tingley R, Shine R (2011) Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One 6(4):e18277. doi: 10.1371/journal.pone.0018277 PubMedCentralPubMedGoogle Scholar
  6. Anderson ML (2010) Neural reuse: a fundamental organizational principle of the brain. Behav Brain Sci 33:245–266PubMedGoogle Scholar
  7. Atkinson RC (2005) College admissions and the SAT: a personal perspective. Am Psychol Soc Newslett 18:15Google Scholar
  8. Atkinson RL, Atkinson RC, Smith EE, Bem DJ, Nolen-Hoeksema S (2000) Hilgard’s introduction to psychology, vol 13. Harcourt College Publishers, New YorkGoogle Scholar
  9. Austin EJ, Deary IJ, Whitemen MC, Fowkes FGR, Pedersen NL, Rabbitt P, McInnes L (2002) Relationship between ability and personality: does intelligence contribute positively to personal and social adjustment? Personal Individ Differ 32:1391–1412Google Scholar
  10. Avise JC (2010) Colloquium paper: footprints of nonsentient design inside the human genome. Proc Natl Acad Sci USA 107(Suppl 2):8969–8976. doi: 10.1073/pnas.0914609107 PubMedCentralPubMedGoogle Scholar
  11. Ayala FJ (2010) Colloquium paper: the difference of being human: morality. Proc Natl Acad Sci USA 107(Suppl 2):9015–9022. doi: 10.1073/pnas.0914616107 PubMedCentralPubMedGoogle Scholar
  12. Baare WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, Kahn RS (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11(9):816–824PubMedGoogle Scholar
  13. Banerjee K, Chabris CF, Johnson VE, Lee JJ, Tsao F, Hauser MD (2009) General intelligence in another primate: individual differences across cognitive task performance in a New World monkey (Saguinus oedipus). PLoS One 4(6):e5883. doi: 10.1371/journal.pone.0005883 PubMedCentralPubMedGoogle Scholar
  14. Barbey AK, Colom R, Grafman J (2012) Distributed neural system for emotional intelligence revealed by lesion mapping. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nss124 PubMedGoogle Scholar
  15. Barbey AK, Colom R, Grafman J (2013) Architecture of cognitive flexibility revealed by lesion mapping. NeuroImage 82:547–554. doi: 10.1016/j.neuroimage.2013.05.087 PubMedGoogle Scholar
  16. Barrickman NL, Bastian ML, Isler K, van Schaik CP (2008) Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. J Hum Evol 54:568–590PubMedGoogle Scholar
  17. Bartholomew DJ (2004) Measuring intelligence: facts and fallacies. Cambridge University Press, Cambridge, UKGoogle Scholar
  18. Bartholomew DJ, Allerhand M, Deary IJ (2013) Measuring mental capacity: Thomson’s Bonds model and Spearman’s g-model compared. Intelligence 41:222–233Google Scholar
  19. Bartley AJ, Jones DW, Weinberger DR (1997) Genetic variability of human brain size and cortical gyral patterns. Brain 120(Pt 2):257–269PubMedGoogle Scholar
  20. Barton RA (2012) Embodied cognitive evolution and the cerebellum. Philos Trans R Soc B Biol Sci 367(1599):2097–2107. doi: 10.1098/rstb.2012.0112 Google Scholar
  21. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405(6790):1055–1058. doi: 10.1038/35016580 PubMedGoogle Scholar
  22. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi:http://www.ncbi.nlm.nih.gov/pubmed/17079517 PubMedGoogle Scholar
  23. Bates E, Reilly J, Wulfeck B, Dronkers N, Opie M, Fenson J, Herbst K (2001) Differential effects of unilateral lesions on language production in children and adults. Brain Lang 79(2):223–265. doi: 10.1006/brln.2001.2482 PubMedGoogle Scholar
  24. Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 104(Suppl 1):8655–8660. doi: 10.1073/pnas.0701985104 PubMedCentralPubMedGoogle Scholar
  25. Bearzi M, Stanford CB (2010) Beautiful minds: the parallel lives of great apes and dolphins. Harvard University Press, CambridgeGoogle Scholar
  26. Bell AM (2009) Approaching the genomics of risk-taking behavior. In: Sokolowski MB (ed) Advances in genetics, vol 68. Academic Press, Burlington, pp 83–104Google Scholar
  27. Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci USA 104(Suppl 1):8649–8654. doi: 10.1073/pnas.0702117104 PubMedCentralPubMedGoogle Scholar
  28. Bergen SE, Gardner CO, Kendler KS (2007) Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta-analysis. Twin Res Hum Genet 10(3):423–433. doi: 10.1375/twin.10.3.423 PubMedGoogle Scholar
  29. Betjemann RS, Johnson EP, Barnard H, Boada E, Filley CM, Filipek PA, Pennington BF (2010) Genetic covariation between brain volumes and IQ, reading performance, and processing speed. Behav Genet 40:135–145PubMedCentralPubMedGoogle Scholar
  30. Blinkhorn SF (1995) Burt and the early history of factor analysis. In: Mackintosh NJ (ed) Cyril Burt: fraud or framed?. Oxford University Press, Oxford, pp 13–44Google Scholar
  31. Bonner JT (2013) Randomness in evolution. Princeton University Press, Princeton, NJGoogle Scholar
  32. Bonney KR, Wynne CD (2004) Studies of learning and problem solving in two species of Australian marsupials. Neurosci Biobehav Rev 28(6):583–594. doi: 10.1016/j.neubiorev.2004.08.005 PubMedGoogle Scholar
  33. Borsboom D (2006) The attack of the psychometricians. Psychometrika 71:425–440PubMedCentralPubMedGoogle Scholar
  34. Bouchard TJ Jr (1993) The genetic architecture of human intelligence. In: Vernon PA (ed) Biological approaches to the study of human intelligence. Ablex, Norwood, NJ, pp 33–93Google Scholar
  35. Bouchard TJ Jr (1994) Genes, environment and personality. Science 264:1700–1701PubMedGoogle Scholar
  36. Bouchard TJ Jr (1997) Experience producing drive theory: How genes drive experience and shape personality. Acta Paediatrica 86(Suppl 422):60–64Google Scholar
  37. Bouchard TJ Jr (2007) Genes and human psychological traits. In: Carruthers P, Laurence S, Stich S (eds) The innate mind: foundations for the future, vol 3. Oxford University Press, OxfordGoogle Scholar
  38. Bouchard TJ Jr (2009a) Genetic influence on human intelligence (Spearman’s g): how much? Ann Hum Biol 36(5):527–544. doi: 10.1080/03014460903103939 PubMedGoogle Scholar
  39. Bouchard TJ Jr (2009b) Strong inference: a strategy for advancing psychological science. In: McCartney K, Weinberg R (eds) Experience and development: a festschrift in honor of Sandra Wood Scarr. Taylor and Francis, London, pp 39–59Google Scholar
  40. Bouchard TJ Jr (2013) The Wilson effect: the increase in heritability of IQ with age. Twin Res Hum Genet 16:923–930. doi: 10.1017/thg.2013.54 PubMedGoogle Scholar
  41. Bouchard TJ Jr, Loehlin JC (2001) Genes, evolution and personality. Behav Genet 31:243–273PubMedGoogle Scholar
  42. Bouchard TJ Jr, Lykken DT, Tellegen A, McGue M (1996) Genes, drives, environment and experience: EPD theory—revised. In: Benbow CP, Lubinski D (eds) Intellectual talent: psychometrics and social issues. John Hopkins University Press, Baltimore, pp 5–43Google Scholar
  43. Bouchard J, Goodyer W, Lefebvre L (2007) Social learning and innovations are positive correlated in pigeons (Columba livia). Anim Cognit 10:259–266Google Scholar
  44. Brandon R (2006) The principle of drift: biology’s first law. J Philos 102(319–335):76Google Scholar
  45. Brant AM, Munakata Y, Boomsma DI, Defries JC, Haworth CM, Keller MC, Hewitt JK (2013) The nature and nurture of high IQ: an extended sensitive period for intellectual development. Psychol Sci. doi: 10.1177/0956797612473119 PubMedGoogle Scholar
  46. Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 57,000 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577. doi: 10.1073/pnas.0408709102 PubMedCentralPubMedGoogle Scholar
  47. Briley DA, Tucker-Drob EM (2013) Explaining the increasing heritability of cognitive ability across development: a meta-analysis of longitudinal twin and adoption studies. Psychol Sci. doi: 10.1177/0956797613478618 PubMedCentralPubMedGoogle Scholar
  48. Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5(1):1–13PubMedGoogle Scholar
  49. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, McMullen MD (2009) The gentic architecture of maize flowering time. Science 325:714–718PubMedGoogle Scholar
  50. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi: 10.1038/nrn2575 PubMedGoogle Scholar
  51. Byrne RW, Bates L, Moss CJ (2009) Elephant cognition in primate perspective. Comp Cogn Behav Rev 4:65–79Google Scholar
  52. Carey G (1988) Inferences about genetic correlations. Behav Genet 18(329–338):77Google Scholar
  53. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, Miller BL (1998) Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29:1177–1181PubMedGoogle Scholar
  54. Carmody RN, Wrangham RW (2009) The energetic significance of cooking. J Hum Evol 57(4):379–391. doi: 10.1016/j.jhevol.2009.02.011 PubMedGoogle Scholar
  55. Carroll JB (1996) A three-stratum theory of intelligence: Spearman’s contribution. In: Denis I, Tapsfield P (eds) Human abilities: their nature and measurement. Erlbaum, Mahawa, NJ, pp 1–18Google Scholar
  56. Carroll JB (2003a) The higher-stratum structure of cognitive abilities: current evidence supports g and about ten broad factors. In: Nyborg H (ed) The science of general intelligence: tribute to Arthur R. Jensen. Elsevier, Oxford, pp 5–22Google Scholar
  57. Carroll SB (2003b) Genetics and the making of Homo sapiens. Nature 422(6934):849–857. doi: 10.1038/nature01495 PubMedGoogle Scholar
  58. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Rappoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyper activity disorder. J Am Med Assoc 288:1740–1748Google Scholar
  59. Chabris CF (2007) Cognitive neurobiological mechanism of the law of general intelligence. In: Roberts MJ (ed) Integrating the mind: domain general versus domain specific processes in higher cognition. Psychology Press, Hove, UK, pp 449–491Google Scholar
  60. Charvet CJ, Finlay BL (2012) Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. In: Hoffman MA, Falk D (eds) Progress in brain research, vol 195. Elsevier, AmsterdamGoogle Scholar
  61. Chen CY, Michael WB (1993) Higher-order abilities conceptualized with in Guilford’s Structure-Of-Intellect (SOI) model for a sample of United States Coast Guard Academy Cadets: a reanalysis of an Soi data base. Educ Psychol Meas 53(4):941–950. doi: 10.1177/0013164493053004007 Google Scholar
  62. Chervet N, Zottl M, Schurch R, Taborsky M, Heg D (2011) Repeatability and heritability of behavioural types in a social cichlid. Int J Evol Biol 2011:321729. doi: 10.4061/2011/321729 PubMedCentralPubMedGoogle Scholar
  63. Cheverud JM, Falk D, Vannier M, Konigsberg L, Helmkamp RC, Hildebolt C (1990) Heritability of brain size and surface features in rhesus macques (Macaca mulatta). J Hered 81:51–57PubMedGoogle Scholar
  64. Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19(21):R995–R1008. doi: 10.1016/j.cub.2009.08.023 PubMedGoogle Scholar
  65. Clark DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Aranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and dedical aspects. Lippincott-Raven, Philadelphia, pp 637–670Google Scholar
  66. Cochran G, Harpending H (2009) The 10,000 year explosion: How civilization accelerated human evolution. Basic Books, New YorkGoogle Scholar
  67. Colom R, Thompson PM (2011) Understanding human intelligence by imaging the brain. In: Chamorro-Premuzic T, Furnham A, Von Stumm S (eds) The Wiley-Blackwell handbook of individual differences. Wiley-Blackwell, London, pp 330–352Google Scholar
  68. Connor RC (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci 362(1480):587–602. doi: 10.1098/rstb 2006.1997PubMedCentralPubMedGoogle Scholar
  69. Cosmides L, Barrett HC, Tooby J (2010) Adaptive specializations, social exchange, and the evolution of human intelligence. Proc Natl Acad Sci USA 107:9007–9014PubMedCentralPubMedGoogle Scholar
  70. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672PubMedGoogle Scholar
  71. Crow JF (2008) Maintaining evolvability. J Genet 87:349–353PubMedGoogle Scholar
  72. Crow JF (2010) On epistasis: why it is unimportant in polygenic directional selection. Philos Trans R Soc B Biol Sci 365:1241–1244. doi: 10.1098/rstb 2009.0275Google Scholar
  73. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, LondonGoogle Scholar
  74. Daston L, Galison P (2007) Objectivity. Zone, New YorkGoogle Scholar
  75. David-Gray ZK, Janssen JWH, DeGrip WJ, Nevo E, Foster RG (1998) Light detection in a ‘blind’ mammal. Nature Neurosci 1:655–656PubMedGoogle Scholar
  76. Dawkins R (1982) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford, p 80Google Scholar
  77. Day LB, Westcott DA, Olster DH (2005) Evolution of bower complexity and cerebellum size in bowerbirds. Brain Behav Evol 66:62–72PubMedGoogle Scholar
  78. De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11(6):552–557PubMedGoogle Scholar
  79. Deaner R, Barton RA, Van Schaik CP (2003) Primate brains and life histories: renewing the connection. In: Kappeler P, Pereira M (eds) Primate life histories and socioecology. University of Chicago Press, Chicago, IL, pp 233–265Google Scholar
  80. Deaner RO, van Schaik CP, Johnson V (2006) Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolut Psychol 4:149–196Google Scholar
  81. Deary IJ, Johnson W, Houlihan LM (2009) Genetic foundations of human intelligence. Hum Genet 126(1):215–232. doi: 10.1007/s00439-009-0655-4 PubMedGoogle Scholar
  82. DeYoung C (2011) Intelligence and personality. In: Sternberg RJ, Kaufman SB (eds) The Cambridge handbook of intelligence. Cambridge University Press, New York, pp 711–737Google Scholar
  83. Dickens WT, Flynn JR (2001) Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychol Rev 108(2):346–369PubMedGoogle Scholar
  84. Draghi JA, Parsons TL, Wagner GP, Plotkin JB (2010) Mutational robustness can facilitate adaptation. Nature 463:353–355. doi: 10.1038/nature0869481 PubMedCentralPubMedGoogle Scholar
  85. Drake JM (2007) Parental investment and fecundity, but not brain size are associated with establishment sucess in introduced fishes. Funct Ecol 21(5):963–968. doi: 10.1111/j.1365-2435.2007.01318.x Google Scholar
  86. Duarte-Carvajalino JM, Jahanshad N, Lenglet C, McMahon KL, de Zubicaray GI, Martin NG, Sapiro G (2012) Hierarchical topological metwork analysis of anatomical brain connectiviety and differences related to sex and kinship. NeuroImage 59:3784–3804PubMedCentralPubMedGoogle Scholar
  87. Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109(42):16974–16979. doi: 10.1073/pnas.1204773109 PubMedCentralPubMedGoogle Scholar
  88. Edwards AWF (1994) The fundamental theorem of natural selection. Biol Rev Camb Philos Soc 69(4):443–474PubMedGoogle Scholar
  89. Edwards AWF (2003) Human genetic diversity: Lewontin’s falacy. BioEssays 25:798–801PubMedGoogle Scholar
  90. Edwards AWF (2004) Foundations of mathematical genetics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  91. Elebedour S, Bouchard TJJ, Hur Y (1997) Similarity in general mental ability in Bedouin full and half siblings. Intelligence 25:71–82Google Scholar
  92. Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306(5703):1903–1907. doi: 10.1126/science.1098410 PubMedGoogle Scholar
  93. Fancher RE (1987) Henry Goddard and the Kallikak family photographs: “Conscious skulduggery” or “Whig history”? Am Psychol 42(585–590):82Google Scholar
  94. Fears SC, Melega WP, Service SK, Lee C, Chen K, Tu Z, Woods RP (2009) Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J Neurosci 29(9):2867–2875. doi: 10.1523/JNEUROSCI.5153-08.2009 PubMedCentralPubMedGoogle Scholar
  95. Feldman MW, Otto SP, Christiansen FB (2000) Genes, culture, and inequality. In: Arrow K, Bowles S, Durlauf S (eds) Meritocracy and economic inequality. Princeton University Press, Princeton, NJGoogle Scholar
  96. Ferguson CJ, Heene M (2012) A vast graveyard of undead theories: publication bias and psychological science’s aversion to the null. Perspect Psychol Sci 7:555–561. doi: 10.1177/1745691612459059 Google Scholar
  97. Finlay BL (2007) E Pluribus Unum: too many unique human capacities and too many theories. In: Gangestad S, Simpson JA (eds) The evolution of mind: fundamental questions and controversies. Guilford Press, New York, pp 294–301Google Scholar
  98. Firkowska A, Ostrowska A, Sokolowska M, Stein Z, Susser M, Wald I (1978) Cognitive development and social policy: the contribution of parental occupation and education to mental performance in 11-year-olds in Warsaw. Science 200:1357–1362PubMedGoogle Scholar
  99. Firkowska-Mankiewicz A (2011) Adult careers: does childhood IQ predict later life outcome? J Policy Pract Intellect Disabil 8(1):1–9. doi: 10.1111/j.1741-1130.2011.00281.x83 Google Scholar
  100. Fish JL, Lockwood CA (2003) Dietary constraints on encephalization in primates. Am J Phys Anthropol 120(2):171–181. doi: 10.1002/ajpa.10136 PubMedGoogle Scholar
  101. Flint J, Munafo M (2013) Genetics. Herit-ability. Science 340(6139):1416–1417. doi: 10.1126/science.1240684 PubMedGoogle Scholar
  102. Floyd RG, Shands EI, Rafael FA, Bergeron R, McGrew KS (2009) The dependability of general-factor loadings: the effects of factor-extraction methods, test battery composition, test battery size, and their interactions. Intelligence 37:453–465. doi: 10.1016/j.intell.2009.05.003 Google Scholar
  103. Fodor JA (1983) The modularity of mind: an essay on faculty psychology. MIT Press, Cambridge, MAGoogle Scholar
  104. Foerder P, Galloway M, Barthel T, Moore DE 3rd, Reiss D (2011) Insightful problem solving in an Asian elephant. PLoS One 6(8):e23251. doi: 10.1371/journal.pone.0023251 PubMedCentralPubMedGoogle Scholar
  105. Foley R, Gamble C (2009) The ecology of social transitions in human evolution. Philos Trans R Soc Lond B Biol Sci 364(1533):3267–3279. doi: 10.1098/rstb.2009.0136 PubMedCentralPubMedGoogle Scholar
  106. Frangou S, Chitins X, Williams SC (2004) Mapping IQ and gray matter density in healthy young people. NeuroImage 23(3):800–805. doi: 10.1016/j.neuroimage.2004.05.027 PubMedGoogle Scholar
  107. Freeman D (2000) 21st Century Boasian Culturism. Anthropology News, May 2000, 4Google Scholar
  108. Freeman HD, Brosnan SF, Hopper LM, Lambeth SP, Schapiro SJ, Gosling SD (2013) Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top-down/bottom-up design. Am J Primatol. doi: 10.1002/ajp.22168 PubMedCentralPubMedGoogle Scholar
  109. Galton F (1871) Gregariousness in cattle and in men. Macmillan’s Mag 23:353–357Google Scholar
  110. Gangestad SW (2010) Evolutionary biology looks at behavior genetics. Personal Individ Differ 49:289–295Google Scholar
  111. Gazes RP, Brown EK, Basile BM, Hampton RR (2013) Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory-based testing. Anim Cognit. doi: 10.1007/s10071-012-0585-8 Google Scholar
  112. Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(Suppl 1):8582–8589. doi: 10.1073/pnas.0701035104 PubMedCentralPubMedGoogle Scholar
  113. Geshwind DH, Miller BL, DeCarli C, Carmelli D (2002) Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci USA 99:3176–3181. doi:http://profiles.ucsf.edu/display/254725 Google Scholar
  114. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci 2(10):861–863. doi: 10.1038/13158 PubMedGoogle Scholar
  115. Glascher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, Adolphs R (2010) Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci USA 107(10):4705–4709. doi: 10.1073/pnas.0910397107 PubMedCentralPubMedGoogle Scholar
  116. Glenn SS, Ellis J (1988) Do the Kallikaks look “Menacing” or “Retarded”? Am Psychol 43:742–743Google Scholar
  117. Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72(1):6–15. doi: 10.1016/j.bandc.2009.08.009 PubMedCentralPubMedGoogle Scholar
  118. Goh S, Bansal R, Xu D, Hao X, Liu J, Peterson BS (2011) Neuroanatomical correlates of intellectual ability across the life span. Dev Cogn Neurosci 1(3):305–312. doi: 10.1016/j.dcn.2011.03.001 PubMedGoogle Scholar
  119. Gould SJ (1981) The mismeasure of man. W. W. Norton, New YorkGoogle Scholar
  120. Gould SJ (1996) The mismeasure of man, 2nd edn. Norton, New YorkGoogle Scholar
  121. Gould SJ, Lewontin RC (1979) The spandrels of San Maco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–589PubMedGoogle Scholar
  122. Gower JC (1972) Measures of taxonomic distance and their analysis. In: Weiner JS, Hiuizinga J (eds) The assessment of population affinities in man. Clarendon, Oxford, pp 1–24Google Scholar
  123. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313(5784):224–226. doi: 10.1126/science.1128374 PubMedGoogle Scholar
  124. Guilford JP (1985) The structure-of-intellect model. In: Wolman BB (ed) Handbook of intelligence: theories, measurements, and applications. Wiley, New York, pp 225–266Google Scholar
  125. Guilford JP (1988) Some changes in the structure-of-intellect model. Educ Psychol Meas 48(1):1–4. doi: 10.1177/001316448804800102 Google Scholar
  126. Guttman L, Levey S (1991) Two structural laws for intelligence tests. Intelligence 15:79–103Google Scholar
  127. Haier RJ (2009) What does a smart brain look like? Sci Am Mind 20:26–33Google Scholar
  128. Haile-Selassie Y, Suwa G, White TD (2004) Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303(5663):1503–1505. doi: 10.1126/science.1092978 PubMedGoogle Scholar
  129. Hampshire A, Thompson R, Duncan J, Owen AM (2011) Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cereb Cortex 21(1):1–10. doi: 10.1093/cercor/bhq085 PubMedCentralPubMedGoogle Scholar
  130. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, Di Rienzo A (2010) Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci USA 107(Suppl 2):8924–8930. doi: 10.1073/pnas.0914625107 PubMedCentralPubMedGoogle Scholar
  131. Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut LN (2005) Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Curr Biol 15:226–230. doi: 10.1016/j.cub.2005.01.040 PubMedGoogle Scholar
  132. Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98. doi: 10.1016/j.neubiorev.2007.05.01287 PubMedGoogle Scholar
  133. Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK (2007) Recent acceleration of human adaptive evolution. Proc Natl Acad Sci USA 104(52):20753–20758. doi: 10.1073/pnas.0707650104 PubMedCentralPubMedGoogle Scholar
  134. Hayes KJ (1962) Genes, drives, and intellect. Psychol Rep 10:299–342Google Scholar
  135. Herbron KA, Macleod R, Miles WTS, Schofield ANB, Alexander L, Arnold KE (2010) Personality in captivity relflects personality in the wild. Anim Behav 79:835–843. doi: 10.1016/j.anbehav.2009.12.026 Google Scholar
  136. Herrmann E, Call J (2012) Are there geniuses among the apes? Philos Trans R Soc B 397:2753–2761Google Scholar
  137. Herrmann E, Hernández-Lloreda MV, Call J, Hare B, Tomasello M (2010) The structure of individual differences in the cognitive abilites of children and chimpanzees. Psychol Sci 21:102–110. doi: 10.1177/0956797609356511 PubMedGoogle Scholar
  138. Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:1–10. doi: 10.1371/journal.pgen.1000008 Google Scholar
  139. Hill K, Barton M, Hurtado M (2010) The emergence of human uniqueness: characters underlying behavioral modernity. Evolut Anthropol 18:187–200. doi: 10.1002/evan.20224 Google Scholar
  140. Holliday MA (1986) Body composition and energy needs during growth. In: Falkner F, Tanner J (eds) Human growth: a comprehensive treatise, 2nd edn. Plenum, New York, pp 101–117Google Scholar
  141. Holloway RL (2002) Head to head with Boas: did he err on the plasticity of head form? Proc Natl Acad Sci USA 99:14622–14623. doi: 10.1073/pnas.242622399 PubMedCentralPubMedGoogle Scholar
  142. Holloway RL (2008) The human brain evolving: a personal retrospective. Annu Rev Anthropol 37(1):1–19. doi: 10.1146/annurev.anthro.37.081407.085211 Google Scholar
  143. Horn JL (1989) Models of intelligence. In: Linn RL (ed) Intelligence: measurement, theory, and public policy. University of Illinois Press, Urbana, IL, pp 29–73Google Scholar
  144. Horn JL, Knapp JR (1973) On the subjective character of the emperical base for Guilford’s structure-of-intellect model. Psychol Bull 80:33–43Google Scholar
  145. Hrdy SB (1999) Mother nature: maternal instincts and how they shape the human species. Pantheon Books, New YorkGoogle Scholar
  146. Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RW, Baaré WF, van Oel C, Kahn RS (2006) Genetic contributions to human brain morphology and intelligence. J Neurosci 26(40):10235–10242. doi: 10.1523/JNEUROSCI.1312-06.2006 PubMedGoogle Scholar
  147. Isler K, van Schaik CP (2006a) Cost of encephalization: the energy trade-off hypothesis tested on birds. J Hum Evol 51:228–243PubMedGoogle Scholar
  148. Isler K, van Schaik CP (2006b) Metabolic costs of brain size evolution. Biol Lett 2(4):557–560. doi: 10.1098/rsbl.2006.0538 PubMedCentralPubMedGoogle Scholar
  149. Isler K, van Schaik CP (2009) Why are there so few smart mammals (but so many smart birds)? Biol Lett 5(125–129):89Google Scholar
  150. Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166PubMedGoogle Scholar
  151. Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300(4):56–63PubMedGoogle Scholar
  152. Jacobs GH, Rowe MP (2004) Evolution of vertebrate colour vision. Clin Exp Optom 87(4–5):206–216. doi: 10.1111/j.1444-0938.2004.tb05050.x PubMedGoogle Scholar
  153. Jaušovec N, Jaušovec K (2005) Sex differences in brain activity related to general and emotional intelligence. Brain Cogn 59(3):277–286. doi: 10.1016/j.bandc.2005.08.001 PubMedGoogle Scholar
  154. Jenkins JJ, Patterson DG (1961) Preface. In: Jenkins JJ, Patterson DG (eds) Studies in individual differences. Appleton-Century-Crofts, New YorkGoogle Scholar
  155. Jensen AR (1998) The g factor: the science of mental ability. Praeger, Westport, CNGoogle Scholar
  156. Jensen AR (2000) The g factor is about variance in human abilities, not a cognitive theory of mental structure. Psycoloquy 11:106Google Scholar
  157. Jensen AR (2006) Clocking the mind: mental chronometry and individual differences. Elsevier, New YorkGoogle Scholar
  158. Johnson W (2010) Extending and testing Tom Bouchard’s experience producing drive theory. Personal Individ Differ 49:296–301. doi: 10.1016/j.paid.2009.11.022 Google Scholar
  159. Johnson W, Bouchard TJ Jr (2005) The structure of human intelligence: it’s verbal, perceptual, and image rotation (VPR), not fluid crystallized. Intelligence 33(393–416):90Google Scholar
  160. Johnson W, Bouchard TJ Jr (2007a) Sex differences in mental abilities: g masks the dimension on which they lie. Intelligence 35:23–39Google Scholar
  161. Johnson W, Bouchard TJ Jr (2007b) Sex differences in mental abilitiy: a proposed means to link them to brain structure and function. Intelligence 35:197–209Google Scholar
  162. Johnson W, Bouchard TJ Jr, McGue M, Segal NL, Tellegen A, Keyes M, Gottesman II (2007) Genetic and environmental influences on the verbal-perceptual-image rotation (VPR) model of the structure of mental abilities in the Minnesota Study of Twins Reared Apart. Intelligence 35:542–562Google Scholar
  163. Johnson W, Nijenhuis JT, Bouchard TJ Jr (2008) Still just 1 g: consistent results from five test batteries. Intelligence 36:81–95Google Scholar
  164. Jolles DD, van Buchem MA, Crone EA, Rombouts SARB (2011) A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21(2):385–391. doi: 10.1093/cercor/bhq104 PubMedGoogle Scholar
  165. Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20:2261–2264. doi: 10.1093/cercor/bhq127 PubMedCentralPubMedGoogle Scholar
  166. Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179(2):1033–1044. doi: 10.1534/genetics.108.087866 PubMedCentralPubMedGoogle Scholar
  167. Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(2):135–187. doi: 10.1017/S0140525X0700118591 PubMedGoogle Scholar
  168. Kaminski J, Call J, Fisher J (2004) Word learning in a domestic dog: evidence for “fast mapping”. Science 304:1682–1683PubMedGoogle Scholar
  169. Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Evans AC (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children age 6 to 18. NeuroImage 55:1443–1453. doi: 10.1016/j.neuroimage.2011.01.016 PubMedCentralPubMedGoogle Scholar
  170. Keith TZ, Reynolds MR, Patel PG, Ridley KP (2008) Sex diferences in latent cognitive abilities age 6 to 59: evidence from the Woodcock-Johnson III tests of cognitive abilities. Intelligence 36:502–525. doi: 10.1016/j.intell.2007.11.001 Google Scholar
  171. Kim Y, Przytycka TM (2013) Bridging the gap between genotype and phenotype via network approaches. Front Genet 3:227. doi: 10.3389/fgene.2012.00227 PubMedCentralPubMedGoogle Scholar
  172. Kimble DP (1997) Didelphid behavior. Neurosci Biobehav Rev 21(3):361–369PubMedGoogle Scholar
  173. Kliebenstein DJ (2010) Systems biology uncovers the fondation of natural genetic diversity. Plant Physiol 152:480–486. doi: 10.1104/pp.109.149328 PubMedCentralPubMedGoogle Scholar
  174. Korb KB (1994) Stephen Jay Gould on intelligence. Cognition 52(2):111–123PubMedGoogle Scholar
  175. Kornum BR, Knudsen GM (2011) Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neurosci Biobehav Rev 35(3):437–451. doi: 10.1016/j.neubiorev.2010.05.00492 PubMedGoogle Scholar
  176. Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453. doi: 10.1016/j.conb.2005.07.003 PubMedGoogle Scholar
  177. Krueger RF, Markon KE, Bouchard TJ Jr (2003) The extended genotype: the heritability of personality accounts for the heritability of recalled family environments in twins reared apart. J Pers 71(5):809–833PubMedGoogle Scholar
  178. Kruska DCT (2005) On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and ferallization. Brain Behav Evol 65:73–108. doi: 10.1159/000082979 PubMedGoogle Scholar
  179. Kurvers RHJM, Ejkelenkamp B, van Oers K, van Lith B, van Wieren SE, Ydenberg RC, Prins HHT (2009) Personality differences explain leadership in barnacle geese. Anim Behav 78:447–453. doi: 10.1016/j.anbehav.2009.06.002 Google Scholar
  180. Lee J (2007) A g beyond Homo sapiens? Some hints and suggestions. Intelligence 35:253–265. doi: 10.1016/j.intell.2006.08.003 Google Scholar
  181. Lee JJ (2009) The role of a general cognitive factor in the evolution of human intelligence. In: Platek SM, Shackelford TK (eds) Foundations in evolutionary cognitive science. Cambridge University Press, CambridgeGoogle Scholar
  182. Lee JJ (2010). Review of intelligence and how to get it: why schools and cultures count, R. E. Nisbett, Norton, New York, NY (2009). ISBN:97803065053. Personal Individ Differ, 48, 247–255. doi: 10.1016/j.paid.2009.09.015
  183. Lee JJ (2012) Correlation and causation in the study of personality. Eur J Pers 26:372–390. doi: 10.1002/per.1863 Google Scholar
  184. Lee S-H, Wolpoff MH (2003) The pattern of evolution in Pleistocene human brain size. Paleobiology 29:186–196Google Scholar
  185. Lefebvre L (2011) Taxonomic counts of cognition in the wild. Biology Lett: Anim Behav 7:631–633. doi: 10.1098/rsbl.2010.0556 Google Scholar
  186. Lefebvre L (2013) Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front Hum Nerosci 7:245. doi: 10.3389/fnhum.2013.00245 Google Scholar
  187. Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63(4):233–246. doi: 10.1159/000076784 PubMedGoogle Scholar
  188. Lessov-Schlaggar CN, Hardin J, DeCarli C, Krasnow RE, Reed T, Wolf PA, Carmelli D (2012) Longitudinal genetic analysis of brain volumes in normal elderly male twins. Neurobiol Aging 33(4):636–644. doi: 10.1016/j.neurobiolaging.2010.06.002 PubMedCentralPubMedGoogle Scholar
  189. Lewis JE, Degusta D, Meyer MR, Monge JM, Mann AE, Holloway RL (2011) The mismeasure of science: Stephen Jay Gould versus Samuel George Morton on skulls and bias. PLoS Biol 9(6):e1001071. doi: 10.1371/journal.pbio.1001071 PubMedCentralPubMedGoogle Scholar
  190. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395. doi: 10.1371/journal.pcbi.100039594 PubMedCentralPubMedGoogle Scholar
  191. Lindenfors P, Nunn CL, Barton RA (2007) Primate brain architecture and selection in relation to sex. BMC Biol 5:20. doi: 10.1186/1741-7007-5-20 PubMedCentralPubMedGoogle Scholar
  192. Loehlin JC (2004) Latent variable models: an introduction to factor, path, and structural analysis, 4th edn. Erlbaum, Mahwah, NJGoogle Scholar
  193. Lubinski D (2010) Spatial ability and STEM: a sleeping giant for talent identification and development. Personal Individ Differ 49:344–351. doi: 10.1016/j.paid.2010.03.022 Google Scholar
  194. Luciana M (2010) Adolescent brain development: current themes and future directions introduction to the special issue. Brain Cogn 72(1):1–5. doi: 10.1016/j.bandc.2009.11.002 PubMedGoogle Scholar
  195. Luders E, Narr KL, Bilder RM, Szeszko PR, Gurbani MN, Hamilton L, Gaser C (2007) Mapping the relationship between cortical convolution and intelligence: effects of gender. Cereb Cortex 18:2019–2026. doi: 10.1093/cercor/bhm227 PubMedCentralPubMedGoogle Scholar
  196. Lykken DT (1991) What’s wrong with psychology anyway? In: Cicchetti D, Grove WM (eds) Thinking clearly about psychology Volume 1: matters of public interest. University of Minnesota Press, Minneapolis, MNGoogle Scholar
  197. Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104:8597–8604. doi: 10.1073/pnas.0702207104 PubMedCentralPubMedGoogle Scholar
  198. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, SunderlandGoogle Scholar
  199. Macphail EM, Bolhuis JJ (2001) The evolution of intelligence: adpative specialization versus general process. Biol Rev 76:341–364PubMedGoogle Scholar
  200. Mahaney MC, Williams-Blangero S, Blangero J, Leland MM (1993) Quantitative genetics of relative organ weight variation in captive baboons. Hum Biol 65(6):991–1003PubMedGoogle Scholar
  201. Major JT, Johnson W, Bouchard TJ Jr (2011) The dependability of the general factor of intelligence: why small, single-factor models do not adequately represent g. Intelligence 39:418–433Google Scholar
  202. Major JT, Johnson W, Deary IJ (2012) Comparing models of intelligence in project TALENT: the VPR model fits better than the CHC and extended Gf–Gc models. Intelligence 40:543–559. doi: 10.1016/j.intell.2012.07.006 Google Scholar
  203. Marcus G (2008) Kluge: the haphazard construction of the human mind. Houghton Mifflin, BostonGoogle Scholar
  204. Marigorta UM, Navarro A (2013) High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. doi: 10.1371/journal.pgen.1003566 PubMedCentralPubMedGoogle Scholar
  205. Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59(1–2):21–32. doi: 10.1159/000063731 PubMedGoogle Scholar
  206. Marino L (2005) Big brains do matter in new environments. Proc Natl Acad Sci USA 102:5306–5307. doi: 10.1073/pnas.0501695102 PubMedCentralPubMedGoogle Scholar
  207. Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5(5):e139. doi: 10.1371/journal.pbio.0050139 PubMedCentralPubMedGoogle Scholar
  208. Martin NG, Eaves LJ, Heath AC, Jardine R, Feingold LM, Eysenck HJ (1986) Transmission of social attitudes. Proc Natl Acad Sci USA 83(12):4364–4368PubMedCentralPubMedGoogle Scholar
  209. Martin-Ordas G, Berntsen D, Call J (2013) Memory for distant past events in Chimpanzees and Orangatangs. Curr Biol. doi: 10.1016/j.cub.2013.06.017 PubMedGoogle Scholar
  210. Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17(1):37–48. doi: 10.1016/j.concog.2006.11.006 PubMedGoogle Scholar
  211. Matzel LD, Wass C, Kolata S (2011) Individual differences in animal intelligence: learning, reasoning, selective attention and inter-species conservation of a cognitve trait. Int J Comp Psychol 24:36–59Google Scholar
  212. Matzke D, Dolan CV, Molenar D (2010) The issue of power in the identification of “g” with lower-order factors. Intelligence 38:336–344. doi: 10.1016/j.intell.2010.02.001 Google Scholar
  213. McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276(5318):1560–1563PubMedGoogle Scholar
  214. McDaniel MA (2005) Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346. doi: 10.1016/j.intell.2004.11.005 Google Scholar
  215. McEvoy BP, Visscher PM (2009) Genetics of human height. Econ Hum Biol 7(3):294–306. doi: 10.1016/j.ehb.2009.09.005 PubMedGoogle Scholar
  216. McGrew KS (2009) CHC theory and the human cognitive abilities project: standing on the shoulders of the giants of psychometric intlligence research. Intelligence 37:1–10. doi: 10.1016/j.intell.2008.08.004 Google Scholar
  217. McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, ChicagoGoogle Scholar
  218. Michael JS (1988) A new look at Morton’s craniological research. Curr Anthropol 29:349–354Google Scholar
  219. Miller GF, Penke L (2006) The evolution of human intelligence and the coefficient of additive genetic variance in human brain size. Intelligence 35:97–114. doi: 10.1016/j.intell.2006.08.008 Google Scholar
  220. Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4(10):e221. doi: 10.1371/journal.pbio.0040321 Google Scholar
  221. Mischel W (2005) Alternative futures for our science. Assoc Psychol Sci Obs 18:2–3Google Scholar
  222. Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500. doi: 10.1007/s00442-002-0952-2 Google Scholar
  223. Mueller-Paul J, Wilkinson A, Hall G, Huber L (2012) Radial-arm-maze behavior of the red-footed tortoise (Geochelone carbonaria). J Comp Psychol 126:305–317PubMedGoogle Scholar
  224. Nippak PMD, Milgram NW (2005) An investigation of the relationship between response latency across several cognitive tasks in the beagle dog. Prog Neuro-Psychopharmachol Biol Psychiat 29(3):371–377. doi: 10.1016/j.pnpbp.2004.12.003 Google Scholar
  225. Niven JE (2005) Brain evolution: getting better all the time? Curr Biol 15(16):R264. doi: 10.1016/j.cub.2005.08.007 Google Scholar
  226. Niven JE (2008) Evolution: convergent eye losses in fishy circumstances. Curr Biol 18(1):R27–R29. doi: 10.1016/j.cub.2007.11.020 PubMedGoogle Scholar
  227. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(Pt 11):1792–1804. doi: 10.1242/jeb.017574 PubMedGoogle Scholar
  228. Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310(5746):304–306. doi: 10.1126/science.1117004 PubMedGoogle Scholar
  229. Nyborg H (ed) (2003) The scientific study of general intelligence: tribute to Arthur Jensen. Pergamon, New YorkGoogle Scholar
  230. Overington SE, Dubois F, Lefebvre L (2008) Food unpredictability drives both generalism and social foraging: a game theoretical model. Behav Ecol 19:836–841. doi: 10.1093/beheco/arn037 Google Scholar
  231. Overington SE, Morand-Ferron J, Boogert NJ, Lefebvre L (2009) Technical innovations drive the relationship between innovativenss and residual brain size in birds. Anim Behav 78:1001–1010. doi: 10.1016/j.anbehav.2009.06.033 Google Scholar
  232. Oxnard CE (2004) Brain evolution: mammals, primates, chimpanzees, and humans. Int J Primatol 25(5):1127–1158. doi: 10.1023/B:IJOP.0000043355.96393.8b99 Google Scholar
  233. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735. doi: 10.1093/cercor/bhp026 PubMedCentralPubMedGoogle Scholar
  234. Pavlicev M, Cheverud JM, Wagner GP (2011) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc R Soc B (Biol Sci) 278(1713):1903–1912. doi: 10.1098/rspb 2010.2113Google Scholar
  235. Pearl J (2009) Causality: models, reasoning, and inference. Cambridge University Press, New YorkGoogle Scholar
  236. Pennington BF, Filipek PA, Lefly D, Chhabidas N, Kennedy DN, Simon JH, DeFries JC (2000) A twin MRI study of size variation in the human brain. J Cogn Neurosci 12:223–232PubMedGoogle Scholar
  237. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28(6):464–473. doi: 10.1002/hbm.20398 PubMedGoogle Scholar
  238. Pepperberg IM, Carey S (2012) Grey parrot number aquisition: the inference of cardinal value from ordinal position on the number list. Cognition 125(2):219–232. doi: 10.1016/j.cognition.2012.07.003 PubMedCentralPubMedGoogle Scholar
  239. Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Genome Biol 11(5):206. doi: 10.1186/gb-2010-11-5-206100 PubMedCentralPubMedGoogle Scholar
  240. Pettit M (2010) The problem of racoon intelligence in behaviorist America. Br J Hist Sci 43:391–421. doi: 10.1017/S0007087409990677 Google Scholar
  241. Pfefferbaum A, Sullivan EV, Swan GE, Carmelli D (2000) Brain structure in men remains highly heritable in the seventh and eight decades of life. Neurobiol Aging 84:189–202Google Scholar
  242. Pilley JW, Reid AK (2011) Border collie comprehends object names as verbal referents. Behav Process 86(2):184–195. doi: 10.1016/j.beproc.2010.11.007 Google Scholar
  243. Platek SM, Keenan P, Shakelford TK (eds) (2007) Evolutionary cognitive neuroscience. The MIT Press, Cambridge, MAGoogle Scholar
  244. Posthuma D, De Geus EJC, Baaré WFC, Hulshoff Pol HE, Kahn RS, Boomsma DI (2002a) The association between brain volume and intelligence is genetic in origin. Nature Neurosci 5:83–84PubMedGoogle Scholar
  245. Posthuma D, de Geus EJC, Boomsma DI (2002b) Genetic contributions to anatomical, behavioral, and neurophysiological indices of cognition. In: Plomin R, DeFries JC, Craig IC, McGuffin P (eds) Behavioral genetics in the postgenomic era. APA Books, Washington, DCGoogle Scholar
  246. Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20(4):R208–R215. doi: 10.1016/j.cub.2009.11.055 PubMedCentralPubMedGoogle Scholar
  247. Radman Z (ed) (2013) The hand, an organ of the mind. Cambridge, MIT Press 101Google Scholar
  248. Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble-bees. Proc R Soc B (Biol Sci) 275(1636):803–808. doi: 10.1098/rspb 2007.1652Google Scholar
  249. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735PubMedCentralPubMedGoogle Scholar
  250. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25(3):377–396. doi: 10.1016/S0197-4580(03)00118-0 PubMedGoogle Scholar
  251. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci USA 99(7):4436–4441. doi: 10.1073/pnas.062041299 PubMedCentralPubMedGoogle Scholar
  252. Reeve CL, Lam H (2005) The psychometric paradox of practice effects due to retesting: measurement invariance and stable ability estimates in the face of observed score changes. Intelligence 33:535–549. doi: 10.1016/j.intell.2005.05.003 Google Scholar
  253. Reeve CL, Meyer RD, Bonaccio S (2006) Intelligence–personality associations reconsidered: the importance of distinguishing between general and narrow dimensions of intelligence. Intelligence 34:387–403. doi: 10.1016/j.intell.2005.11.001 Google Scholar
  254. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Koellinger PD (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340(6139):1467–1471. doi: 10.1126/science.1235488 PubMedCentralPubMedGoogle Scholar
  255. Roberts RC (1967) Some concepts and methods in quantitative genetics behavior–genetic analysis. McGraw-Hill, New York, pp 214–257Google Scholar
  256. Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66(1):1–17. doi: 10.1111/j.1558-5646.2011.01486.x PubMedCentralPubMedGoogle Scholar
  257. Rogers J, Kochunov P, Lancaster J, Shelledy W, Glahn D, Blangero J, Fox P (2007) Heritability of brain volume, surface area and shape: an MRI study in an extended pedigree of baboons. Hum Brain Mapp 28(6):576–583. doi: 10.1002/hbm.20407 PubMedGoogle Scholar
  258. Rogers J, Shelton SE, Shelledy W, Garcia R, Kalin NH (2008) Genetic influence on behavioral inhibition and anxiety in juvenile rhesus macaques. Genes Brain Behav 7:463–469. doi: 10.1111/j.1601-183X.2007.00381.x PubMedCentralPubMedGoogle Scholar
  259. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9(5):250–257. doi: 10.1016/j.tics.2005.03.005 PubMedGoogle Scholar
  260. Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176PubMedGoogle Scholar
  261. Rushton JP (1997) Race, intelligence, and the brain: The errors and omissions of the ‘revised’ edition of S. J. Gould’s the mismeasure of man (1996). Personal Individ Differ 23(169–180):103Google Scholar
  262. Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119(5):691–731. doi: 10.1080/00207450802325843 PubMedGoogle Scholar
  263. Russell DA (1983) Exponential evolution: implications for intelligent extraterrestrial life. Adv Space Res 3(9):95–103PubMedGoogle Scholar
  264. Salthouse TA (2013) Evaluating the correspondence of different cognitive batteries. Assessment. doi: 10.1177/1073191113486690 PubMedGoogle Scholar
  265. Sauce B, Matzel LD (2013) The causes of variation in learning and behavior: why individual differences matter. Front Psychol: Personal Individ Differ 4:1–10Google Scholar
  266. Scarr S (1996) How people make their own environments: implications for parents and policy makers. Psychol Public Policy Law 2:204–228Google Scholar
  267. Schmidt F (2010) Detecting and correcting the lies that data tell. Perspect Psychol Sci 5(3):233. doi: 10.1177/1745691610369339 Google Scholar
  268. Schmithorst VJ (2009) Developmental sex differences in the relation of neuroanatomical connectivity to intelligence. Intelligence 37:164–173. doi: 10.1016/j.intell.2008.07.001 PubMedCentralPubMedGoogle Scholar
  269. Schmithorst VJ, Yuan W (2010) White matter development during adolescence as shown by diffusion MRI. Brain Cogn 72:16–25. doi: 10.1016/j.bandc.2009.06.005104 PubMedGoogle Scholar
  270. Schmitt JE, Wallace GL, Lenroot RK, Ordaz SE, Greenstein D, Clasen L, Giedd JN (2010) A twin study of intracerebral volumetric relationships. Behav Genet 40(2):114–124. doi: 10.1007/s10519-010-9332-6 PubMedCentralPubMedGoogle Scholar
  271. Scott JP (1990) Foreword. In: Hahn ME, Hewitt JK, Henderson ND, Benno RH (eds) Developmental behavior genetics: neural, biometrical, and evolutionary approaches. Oxford, New YorkGoogle Scholar
  272. Segal N (2012) Born together-reared apart: the landmark Minnesota twin study. Harvard University Press, CambridgeGoogle Scholar
  273. Sesardic N (2005) Making sense of heritability. Cambridge University Press, CambridgeGoogle Scholar
  274. Shaw P (2007) Intelligence and the developing human brain. BioEssays 29(10):962–973. doi: 10.1002/bies.20641 PubMedGoogle Scholar
  275. Shermer MB (2002) Stephen Jay Gould as historian of science and scientific historian, popular scientist and scientific popularizer. Soc Stud Sci 32:489–525PubMedGoogle Scholar
  276. Sherrington CS (1906) The integrative action of the nervous system. Scribner, New YorkGoogle Scholar
  277. Shettleworth SJ (2012) Modularity, comparative cognition and human uniqueness. Philos Trans R Soc B Biol Sci 367(1603):2794–2802. doi: 10.1098/rstb.2012.0211 Google Scholar
  278. Shumway CA (2008) Habitat complexity, brain, and behavior. Brain Behav Evol 72(2):123–134. doi: 10.1159/000151472105 PubMedGoogle Scholar
  279. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329(5987):72–75. doi: 10.1126/science.1189406 PubMedGoogle Scholar
  280. Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B (Biol Sci) 280:1759. doi: 10.1098/rspb.2013.0269 Google Scholar
  281. Smaers JB, Steele J, Case CR, Amunts K (2013) Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann N Y Acad Sci 1288:59–69. doi: 10.1111/nyas.12047 PubMedGoogle Scholar
  282. Smit DJ, Luciano M, Bartels M, van Beijsterveldt CE, Wright MJ, Hansell NK, Boomsma DI (2010) Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Res Human Genet 13(4):370–380. doi: 10.1375/twin.13.4.370 Google Scholar
  283. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102(15):5460–5465. doi: 10.1073/pnas.0408145102 PubMedCentralPubMedGoogle Scholar
  284. Sol D, Bacher S, Reader SM, Lefebvre L (2008) Brain size predicts the success of mammal species introduced into novel environments. Am Nat 172:S63–S71. doi: 10.1086/588304 PubMedGoogle Scholar
  285. Soyfer VN (2001) The consequences of political dictatorship for Russian science. Nat Rev Genet 2(9):723–729. doi: 10.1038/35088598106 PubMedGoogle Scholar
  286. Sparks CS, Jantz RL (2002) A reassessment of human cranial plasticity: Boas revisited. Proc Natl Acad Sci USA 99(23):14636–14639. doi: 10.1073/pnas.222389599 PubMedCentralPubMedGoogle Scholar
  287. Spuhler JN (1982) The use and misuse of the Mismeasure of Man. Review of Gould, S. J. (1981) The Mismeasure of Man. Contemp Psychol 27:933–935Google Scholar
  288. Stanford CB (1995) Chimpanzee hunting behavior and human evolution. Am Sci 83:256–261Google Scholar
  289. Sternthal S (2010) Moscow’s stray dogs. Financial TimesGoogle Scholar
  290. Tarka M, ÅKesson M, Beraldi D, Hernández-Sánchez J, Hasselquist D, Bensch S, Hansson B (2010) A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warbels. Proc R Soc B (Biol Sci) 277:2361–2369. doi: 10.1098/rspb.2010.0033 Google Scholar
  291. Taylor AH, Miller R, Gray RD (2012) New Caledonian crows reason about hidden causal agents. Proc Natl Acad Sci USA 109(40):16389–16391. doi: 10.1073/pnas.1208724109 PubMedCentralPubMedGoogle Scholar
  292. Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258. doi: 10.1038/nn758 PubMedGoogle Scholar
  293. Thornton A, Lukas D (2012) Individual variation in cognitive performance: developmental and evolutionary perspectives. Philos Trans R Soc B Biol Sci 367(1603):2773–2783. doi: 10.1098/rstb.2012.0214107 Google Scholar
  294. Thornton A, Samson J (2012) Innovative problem solving in wild meerkats. Anim Behav 83(6):1459–1468. doi: 10.1016/j.anbehav.2012.03.018 Google Scholar
  295. Thurstone LL, Thurstone TG (1941) Factorial studies of intelligence. University of Chicago Press, ChicagoGoogle Scholar
  296. Tooby J, Cosmides L (2005) Conceptual foundations of evolutionary psychology. In: Buss DM (ed) Evolutionary psychology handbook. Wiley, New YorkGoogle Scholar
  297. Tramo MJ, Loftus WC, Thomas CE, Green RL, Mott LA, Gazzaniga MS (1995) Surface area of human cerebral cortex and its gross morphological subdivisions: in vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. J Cogn Neurosci 7(2):292–302PubMedGoogle Scholar
  298. Tramo MJ, Loftus WC, Stukel TA, Green RL, Weaver JB, Gazzaniga MS (1998) Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50:1246–1252PubMedGoogle Scholar
  299. Trinkaus E (2007) Human evolution: neandertal gene speaks out. Curr Biol 17(21):R917–R919. doi: 10.1016/j.cub.2007.09.055 PubMedGoogle Scholar
  300. Trut LN (1999) Early canid domestication: the farm-fox experiment. Am Sci 87:160–169Google Scholar
  301. Turkheimer E (2000) Three laws of behavior genetics and what they mean. Curr Dir Psychol Sci 9:160–164Google Scholar
  302. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624. doi: 10.1523/JNEUROSCI.1443-09.2009 PubMedGoogle Scholar
  303. van der Maas HL, Dolan CV, Grasman RP, Wicherts JM, Huizenga HM, Raijmakers ME (2006) A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol Rev 114(4):842–861. doi: 10.1037/0033-295X.113.4.842 Google Scholar
  304. van der Woude E, Smid HM, Chittka L, Huigens ME (2013) Breaking Haller’s rule: brain–body size isometry in a minute parasitic wasp. Brain Behav Evol 81(2):86–92. doi: 10.1159/000345945 PubMedGoogle Scholar
  305. van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. Philos Trans R Soc Biol Sci 365(1560):3991–4000. doi: 10.1098/rstb 2010.0178Google Scholar
  306. Van Valen L (1974) Brain size and intelligence in man. Am J Phys Anthropol 40(3):417–424. doi: 10.1002/ajpa.1330400314 PubMedGoogle Scholar
  307. Varki A, Geschwind DH, Eichler EA (2008) Explaining human uniqueness: genome interactions with environment, behavior and culture. Nat Rev Genet 9:749–763. doi: 10.1038/nrg2428 PubMedCentralPubMedGoogle Scholar
  308. Vernon PE (1965) Ability factors and environmental influences. Am Psychol 20:723–733PubMedGoogle Scholar
  309. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era: concepts and misconceptions. Nat Rev Genet 9(4):255–266. doi: 10.1038/nrg2322 PubMedGoogle Scholar
  310. Vonnegut K (1961) Harrison Bergeron. The Magazine of Fantasy and Science FictionGoogle Scholar
  311. Wahlsten D, Metten P, Phillips TJ, Boehm SL II, Burkhart-Kasch S, Dorow J, Crabbe J (2003) Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol 54:283–311PubMedGoogle Scholar
  312. Wang ET, Kodama G, Baldi P, Moyzis RK (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci USA 103:135–140. doi: 10.1073/pnas.0509691102 PubMedCentralPubMedGoogle Scholar
  313. Wass C, Denman-Brice A, Rios C, Light KR, Kolata S, Smith AM, Matzel LD (2012) Covariation of learning and “reasoning” abilities in mice: evolutionary conservation of the operations of intelligence. J Exp Psychol Anim Behav Process 38(2):109–124. doi: 10.1037/a0027355 PubMedGoogle Scholar
  314. Wiederman SD, O’Carroll DC (2013) Selective attention in an insect visual neuron. Curr Biol 23(2):156–161. doi: 10.1016/j.cub.2012.11.048 PubMedGoogle Scholar
  315. Wilkins AS (2007) Between “design” and “bricolage”: genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104:8590–8596. doi: 10.1073/pnas.0701044104 PubMedCentralPubMedGoogle Scholar
  316. Wilkinson A, Huber L (2012) Cold-blooded cognition: reptilian cognitive abilities. In: Vonk J, Shackelford TK (eds) The Oxford handbook of comparative evolutionary psychology. Oxford University Press, OxfordGoogle Scholar
  317. Willemet R (2013) Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front Psychol: Comp Psychol 4:1–26. doi: 10.3389/fpsyg.2013.00396110 Google Scholar
  318. Williams GC (1992) Natural selection: domains, levels, and challenges. Oxford University Press, New YorkGoogle Scholar
  319. Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, Duchaine B (2010) Human face recognition ability is specific and highly heritable. Proc Natl Acad Sci USA 107(11):5238–5241. doi: 10.1073/pnas.0913053107 PubMedCentralPubMedGoogle Scholar
  320. Wilson RS (1983) The Louisville Twin Study: developmental synchronies in behavior. Child Dev 54(2):298–316PubMedGoogle Scholar
  321. Wilson AC (1985) The molecular basis of evolution. Sci Am 253(4):164–173PubMedGoogle Scholar
  322. Wood B (2010) Colloquium paper: reconstructing human evolution: achievements, challenges, and opportunities. Proc Natl Acad Sci USA 107(Suppl 2):8902–8909. doi: 10.1073/pnas.1001649107 PubMedCentralPubMedGoogle Scholar
  323. Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, He Y (2011) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21(2):449–458. doi: 10.1093/cercor/bhq111 PubMedGoogle Scholar
  324. Yao L, Brown JP, Stampanoni M, Marone F, Isler K, Martin RD (2012) Evolutionary change in the brain size of bats. Brain Behav Evol 80(1):15–25. doi: 10.1159/000338324 PubMedGoogle Scholar
  325. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78. doi: 10.1126/science.1190371 PubMedCentralPubMedGoogle Scholar
  326. Zenderland L (1988) On interpreting photographs, faces and the past. Am Psychol 42:743–744Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.Steamboat SpringsUSA

Personalised recommendations