Behavior Genetics

, 41:680 | Cite as

A Twin Association Study of Nicotine Dependence with Markers in the CHRNA3 and CHRNA5 Genes

  • Hermine H. Maes
  • Michael C. Neale
  • Xiangning Chen
  • Jingchun Chen
  • Carol A. Prescott
  • Kenneth S. Kendler
Original Research

Abstract

Twin and family studies have provided overwhelming evidence for the genetic basis of individual differences in tobacco initiation (TI), regular smoking (RS) and nicotine dependence (ND). However, only a few genes have been reliably associated with ND. We used a finite mixture distribution model to examine the significance and effect size of the association of previously identified and replicated specific variants in the CHRNA5 and CHRNA3 receptor genes with ND, against the background of genetic and environmental risk factors for ND. We hypothesize that additional phenotypic information in relatives who have not been genotyped can be used to increase the power of detecting the genetic variant. The nicotine measures were assessed by personal interview in female, male and opposite sex twin pairs (N = 4,153) from the population-based Virginia Twin Registry. Three SNPs in the CHRNA5 and CHRNA3 receptor genes, previously shown to be significantly associated with ND in this sample, were replicated in the augmented analyses; they accounted for less than one percent of the genetic variance in liability to ND, which is estimated to be over 50% of the phenotypic variance. The significance of these effects was increased by adding twins with phenotype but without genotype data, but gains are limited and variable. The SNPs associated with ND did not show a significant association with either TI or RS and appear to be specific to the addictive stage of ND, characterized by current smoking and smoking a large amount of cigarettes per day. Furthermore, these SNPs did not appear to be associated with the remaining items comprising the FTND scale. This study confirmed a significant contribution of the CHRNA receptor on different forms of tobacco dependence. However, the genetic variant only accounted for little of the total genetic variance for liability to ND. Including phenotypic data on ungenotyped relatives can improve the statistical power to detect the effects of genetic variants when they contribute to individual differences in the phenotype.

Keywords

Nicotine Dependence Association Twin studies Smoking Receptors 

References

  1. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373PubMedCrossRefGoogle Scholar
  2. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171PubMedCrossRefGoogle Scholar
  3. Boker S, Neale MC, Maes HH, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, Mehta P, Fox J (2010) OpenMx: an open source extended structural equation modeling framework. Psychometrika 76:306–317Google Scholar
  4. Chen X, Chen J, Williamson VS, An SS, Hettema JM, Aggen SH, Neale MC, Kendler KS (2009) Variants in nicotinic acetylcholine receptors alpha5 and alpha3 increase risks to nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 150B:926–933PubMedCrossRefGoogle Scholar
  5. Fagerström KO (1978) Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 11:331–335Google Scholar
  6. Fagerström KO, Schneider NG (1989) Measuring nicotine dependence: a review of the Fagerström tolerance questionnaire. J Behav Med 12:159–182PubMedCrossRefGoogle Scholar
  7. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO (1991) The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. British J Addic 86:1119–1127CrossRefGoogle Scholar
  8. Kendler KS, Gardner CO (1998) Twin studies of adult psychiatric and substance dependence disorders: are they biased by differences in the environmental experiences of monozygotic and dizygotic twins in childhood and adolescence. Psychol Med 28:825–833CrossRefGoogle Scholar
  9. Kendler KS, Prescott CA (2006) Genes, environment, and psychopathology: understanding the causes of psychiatric and substance use disorders. Guilford Press, New YorkGoogle Scholar
  10. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G, Vollenweider P, Preisig M, Wareham NJ, Zhao JH, Loos RJ, Barroso I, Khaw KT, Grundy S, Barter P, Mahley R, Kesaniemi A, McPherson R, Vincent JB, Strauss J, Kennedy JL, Farmer A, McGuffin P, Day R, Matthews K, Bakke P, Gulsvik A, Lucae S, Ising M, Brueckl T, Horstmann S, Wichmann HE, Rawal R, Dahmen N, Lamina C, Polasek O, Zgaga L, Huffman J, Campbell S, Kooner J, Chambers JC, Burnett MS, Devaney JM, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein S, Wilson JF, Wild SH, Campbell H, Vitart V, Reilly MP, Li M, Qu L, Wilensky R, Matthai W, Hakonarson HH, Rader DJ, Franke A, Wittig M, Schäfer A, Uda M, Terracciano A, Xiao X, Busonero F, Scheet P, Schlessinger D, St Clair D, Rujescu D, Abecasis GR, Grabe HJ, Teumer A, Völzke H, Petersmann A, John U, Rudan I, Hayward C, Wright AF, Kolcic I, Wright BJ, Thompson JR, Balmforth AJ, Hall AS, Samani NJ, Anderson CA, Ahmad T, Mathew CG, Parkes M, Satsangi J, Caulfield M, Munroe PB, Farrall M, Dominiczak A, Worthington J, Thomson W, Eyre S, Barton A, Wellcome Trust Case Control Consortium, Mooser V, Francks C, Marchini J (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42(5):436–440PubMedCrossRefGoogle Scholar
  11. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, SunderlandGoogle Scholar
  12. Maes HH, Neale MC (2009) Genetic modeling of tobacco use behavior and trajectories. In: Swan GE, Baker TB, Chassin L, Conti DV, Lerman C, Perkins KA (eds) NCI Tobacco Control Monograph Series 20: phenotypes and endophenotypes: foundations for genetic studies of nicotine use and dependence. US Department of Health and Human Services, National Institutes of Health, BethesdaGoogle Scholar
  13. Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ, Kendler KS (2004) A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med 34:1251–1261PubMedCrossRefGoogle Scholar
  14. Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers BV, DordrechtGoogle Scholar
  15. Neale MC, Boker SM, Xie G, Maes HH (2002) Mx: statistical modeling, 6th edn. VCU Box 900126, Richmond, VA 23298: Department of PsychiatryGoogle Scholar
  16. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49PubMedCrossRefGoogle Scholar
  17. Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D, Johnson EO, Madden PA, Swan GE, Wang JC, Goate AM, Rice JP, Bierut LJ (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B:453–466PubMedCrossRefGoogle Scholar
  18. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, Giegling I, Han S, Han Y, Keskitalo-Vuokko K, Kong X, Landi MT, Ma JZ, Short SE, Stephens SH, Stevens VL, Sun L, Wang Y, Wenzlaff AS, Aggen SH, Breslau N, Broderick P, Chatterjee N, Chen J, Heath AC, Heliövaara M, Hoft NR, Hunter DJ, Jensen MK, Martin NG, Montgomery GW, Niu T, Payne TJ, Peltonen L, Pergadia ML, Rice JP, Sherva R, Spitz MR, Sun J, Wang JC, Weiss RB, Wheeler W, Witt SH, Yang BZ, Caporaso NE, Ehringer MA, Eisen T, Gapstur SM, Gelernter J, Houlston R, Kaprio J, Kendler KS, Kraft P, Leppert MF, Li MD, Madden PA, Nöthen MM, Pillai S, Rietschel M, Rujescu D, Schwartz A, Amos CI, Bierut LJ (2010) Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6(8):pii 1001053Google Scholar
  19. Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ, Lessem JM, McQueen MB, Rhee SH, Ehringer MA (2007) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 63(11):1039–1046PubMedCrossRefGoogle Scholar
  20. Straub RE, Sullivan PF, Ma Y, Myakishev MV, Harris-Kerr C, Wormley B, Kadambi B, Sadek H, Silverman MA, Webb BT, Neale MC, Bulik CM, Joyce PR, Kendler KS (1999) Susceptibility genes for nicotine dependence: a genome scan and followup in an independent sample suggest that regions on chromosomes 2, 4, 10, 16, 17 and 18 merit further study. Mol Psychiatry 4:129–144PubMedCrossRefGoogle Scholar
  21. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S, Gieger C, Rawal R, Mangino M, Prokopenko I, Mägi R, Keskitalo K, Gudjonsdottir IH, Gretarsdottir S, Stefansson H, Thompson JR, Aulchenko YS, Nelis M, Aben KK, den Heijer M, Dirksen A, Ashraf H, Soranzo N, Valdes AM, Steves C, Uitterlinden AG, Hofman A, Tönjes A, Kovacs P, Hottenga JJ, Willemsen G, Vogelzangs N, Döring A, Dahmen N, Nitz B, Pergadia ML, Saez B, De Diego V, Lezcano V, Garcia-Prats MD, Ripatti S, Perola M, Kettunen J, Hartikainen AL, Pouta A, Laitinen J, Isohanni M, Huei-Yi S, Allen M, Krestyaninova M, Hall AS, Jones GT, van Rij AM, Mueller T, Dieplinger B, Haltmayer M, Jonsson S, Matthiasson SE, Oskarsson H, Tyrfingsson T, Kiemeney LA, Mayordomo JI, Lindholt JS, Pedersen JH, Franklin WA, Wolf H, Montgomery GW, Heath AC, Martin NG, Madden PA, Giegling I, Rujescu D, Järvelin MR, Salomaa V, Stumvoll M, Spector TD, Wichmann HE, Metspalu A, Samani NJ, Penninx BW, Oostra BA, Boomsma DI, Tiemeier H, van Duijn CM, Kaprio J, Gulcher JR, ENGAGE Consortium, McCarthy MI, Peltonen L, Thorsteinsdottir U, Stefansson K (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42(5):448–453PubMedCrossRefGoogle Scholar
  22. Tobacco Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42(5):441–447CrossRefGoogle Scholar
  23. US Department of Health and Human Services (1989) Reducing the health consequences of smoking: 25 years of progress. Department of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, RockvilleGoogle Scholar
  24. van den Oord EJCG, Snieder H (2002) Including measured genotypes in statistical models to study the interplay of multiple factors affecting complex traits. Behav Genet 32:1–21PubMedCrossRefGoogle Scholar
  25. Visscher PM, Duffy DL (2006) The value of relatives with phenotypes but missing genotypes in association studies for quantitative traits. Genet Epidemiol 30:30–36PubMedCrossRefGoogle Scholar
  26. Visscher PM, Toby Andrew T, Nyholt DR (2008) Genome-wide association studies of quantitative traits with related individuals: little (power) lost but much to be gained. Eur J Human Genet 16:387–390CrossRefGoogle Scholar
  27. Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, Singh NA, Baird L, Coon H, McMahon WM, Piper ME, Fiore MC, Scholand MB, Connett JE, Kanner RE, Gahring LC, Rogers SW, Hoidal JR, Leppert MF (2008) A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 4(7):e1000125PubMedCrossRefGoogle Scholar
  28. Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, Krasnow R, Dirks W, Hardin J, Pitts SJ, Michel M, Jack L, Ballinger DG, McClure JB, Swan GE, Bergen AW (2010) Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerström test for nicotine dependence. Neuropsychopharmacology 35:2392–2402PubMedCrossRefGoogle Scholar
  29. World Health Organization (1997) Tobacco or Health: A Global Status Report. Geneva: World Health OrganizationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hermine H. Maes
    • 1
    • 2
    • 3
  • Michael C. Neale
    • 1
    • 3
  • Xiangning Chen
    • 1
    • 3
  • Jingchun Chen
    • 3
  • Carol A. Prescott
    • 4
  • Kenneth S. Kendler
    • 1
    • 3
  1. 1.Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of PsychologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations