Skip to main content
Log in

Age-Dependent Stability of Sensorimotor Functions in the Life-Extended Drosophila mutant Methuselah

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Methuselah is a Drosophila mutant with a 35% increased lifespan. We examined the robustness of methuselah’s sensorimotor abilities in tethered flight as a function of age in experiments designed to test visuomotor synchronization and phototaxis in simulated flight. A total of 282 flies from different age groups (4 hours to 70 days) and genotypes (mth and w1118) were individually tethered under an infrared laser-sensor system that digitally recorded wing-beat frequency (WBF). We found that mth has a higher average WBF throughout most of its lifespan compared to parental control flies (w1118) and develops flight ability at a younger age. Its WBF at late life, however, is not significantly different than that of its parental control line. We further found that mth entrains during flight to motion of a visual grating significantly better than its parental line. These findings suggest that the mth gene not only delays chronological aging but enhances sensorimotor abilities critical to survival during early and middle, but not late life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aigaki T, Seong KH, Matsuo T (2002) Longevity determination genes in Drosophila melanogaster. Mech Ageing Dev 123:1531–1541

    Article  PubMed  CAS  Google Scholar 

  • Al-Saffar ZY, Grainger JNR, Aldrich J (1996) Temperature and humidity affecting development, survival and weight loss of the pupal stage of Drosophila melanogaster, and the influence of alternating temperature on the larvae. J Therm Biol 21:389–396

    Article  Google Scholar 

  • Autrum H (1958) Electrophysiological analysis of the visual systems in insects. Exp Cell Res 5(Suppl.):426–439

    Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  PubMed  CAS  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Aging Dev 125:811–826

    Article  PubMed  CAS  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101

    Article  Google Scholar 

  • Carey JR, Liedo P, Müller HG, Wang JL, Senturk D, Harshman L (2005) Biodemography of a long-lived tephritid: reproduction and longevity in a large cohort of female Mexican fruit flies, Anastrepha ludens. Exp Gerontol 40:793–800

    Article  PubMed  Google Scholar 

  • Cook-Wiens E, Grotewiel MS (2002) Dissociation between functional senescence and oxidative stress resistance in Drosophila. Exp Gerontol 37:1345–1355

    Article  Google Scholar 

  • Cosens D, Spatz HC (1978) Flicker fusion studies in lamina and receptor region of Drosophila eye. J Insect Physiol 24:587–594

    Article  Google Scholar 

  • Curtsinger JW, Fukui HH, Khazaeli AA, Kirscher A, Pletcher SD, Promislow SEL, Tatar M (1995) Genetic variation and aging. Annu Rev Genet 29:553–575

    Article  PubMed  CAS  Google Scholar 

  • Cvejic S, Zhu Z, Felice SJ, Berman Y, Huang XY (2004) The endogenous ligand stunted of the GPCR Methuselah extends lifespan in Drosophila. Nature Cell Biol 6:540–546

    Article  PubMed  CAS  Google Scholar 

  • Fortini ME, Skupski MP, Boguski MS, Hariharan IK (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150:F23–F29

    Article  PubMed  CAS  Google Scholar 

  • Hadler NM (1964) Genetic influence on phototaxis in Drosophila Melanogaster. Biol Bull 126:264–273

    Article  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Sognal 5:557–561

    Article  CAS  Google Scholar 

  • Harman D (1995) Free radical theory of aging: alzheimer’s disease pathogenesis. AGE 18:97–119

    Article  Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, Berlin

    Google Scholar 

  • Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Aging Dev 126:365–379

    Article  PubMed  CAS  Google Scholar 

  • Lehmann FO, Dickinson MH (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol 201:385–401

    Google Scholar 

  • Lehmann FO, Dickinson MH (2001) The production of elevated flight force compromises maneuverability in the fruit fly Drosophila melanogaster. J Exp Biol 204:627–635

    PubMed  CAS  Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant Methuselah. Science 282:943–946

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  PubMed  CAS  Google Scholar 

  • Marden JH, Rogina B, Montooth KL, Helfand SL (2003) Conditional Tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100:3369–3373

    Article  PubMed  CAS  Google Scholar 

  • Miller GV, Hansen KN, Stark WS (1981) Phototaxis in Drosophila–R1-6 input and interaction among ocellar and compound eye receptors. J Insect Physiol 27:813–819

    Article  Google Scholar 

  • Osiewacz HD (1997) Genetic regulation of aging. J Mol Med 75:715–727

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos NT, Katsoyannos BI, Kouloussis NA, Carey JR, Miiller H-G, Zhang Y (2004) High sexual signalling rates of young individuals predict extended life span in male Mediterranean fruit flies. Oecologia 138:127–134

    Article  PubMed  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Sherman A, Dickinson MH (2004) Summation of visual and mechanosensory feedback in Drosophila flight control. J Exp Biol 207:133–142

    Article  PubMed  Google Scholar 

  • Song W, Ranjan R, Dawson-Scully K, Bronk P, Marin L, Seroude L, Lin YJ, Nie ZP, Atwood HL, Benzer S, Zinsmaier KE (2002) Presynaptic regulation of neurotransmission in Drosophila by the G protein-coupled receptor Methuselah. Neuron 36:105–119

    Article  PubMed  CAS  Google Scholar 

  • Tammero LF, Dickinson MH (2002) Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J Exp Biol 205:2785–2798

    PubMed  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, et al (2001) A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  • Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96:1139–11403

    Article  Google Scholar 

  • Vaupel JW, Carey JR, Christensen K (2003) It’s never too late. Science 301:1679

    Article  PubMed  CAS  Google Scholar 

  • Wang HD, Kazemi-Esfarjani P, Benzer S (2004) Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci USA 101:12610–12615

    Article  PubMed  CAS  Google Scholar 

  • West AP, Llamas LL, Snow PM, Benzer S, Bjorkman PJ (2001) Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan. Proc Natl Acad Sci USA 98:3744–3749

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Muller HG, Carey JR, Papadopoulos NT (2006) Behavioral trajectories as predictors in event history analysis: male calling behavior forecasts medfly longevity. Mech Ageing Dev 127:680–686

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Seymour Benzer who generously provided the mth and parental-line flies, Dr. Michael Dickinson who graciously shared with us his technical expertise, and Dr. Ted Wright for his valuable insights throughout this research. We also thank three anonymous reviewers for their helpful comments. Portions of this work were presented at the 34th national meeting of the Society for Neuroscience, San Diego, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Saberi.

Additional information

Edited by Yong-Kyu Kim

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrosyan, A., Hsieh, IH. & Saberi, K. Age-Dependent Stability of Sensorimotor Functions in the Life-Extended Drosophila mutant Methuselah . Behav Genet 37, 585–594 (2007). https://doi.org/10.1007/s10519-007-9159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-007-9159-y

Keywords

Navigation