Abstract
This paper investigates the role of the horizontal axial force on the in-plane shear and flexural strength of masonry spandrels subjected to seismic actions. Strength criteria included in the main national and international codes take into account for geometrical and material properties, but valuable considerations about the influence of the horizontal axial force are missing. Nevertheless, experimental programs and post-earthquake damage scenarios proved that the horizontal axial force within the spandrels can be also significant under seismic actions, especially when they are surrounded by strength and stiff vertical piers or when significantly compressed by the effect of tensile-resistant elements. As main purpose, the strength criteria proposed by the Italian code for the spandrels have been revised accounting for the effect of the horizontal axial force on its shear and flexural strength. A database containing experimental tests conducted on masonry spandrels was elaborated and used to compare experimental with theoretical results. Outcomes showed that the revised criteria match satisfactorily the experimental results when significant axial forces affect the spandrels, both in terms of strength and failure mechanism. Contrariwise, existing code formulations are representative for the spandrels subjected to low axial force such that rocking or pure shear mechanisms tend to prevail.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
Abbreviations
- F:
-
Horizontal seismic action
- f b :
-
Compression strength of block
- f btd :
-
Tensile strength of block
- f ft :
-
Tensile strength of spandrel
- f mh :
-
Compression strength of masonry
- f t :
-
Diagonal tensile strength of masonry
- f tb :
-
Tensile strength of block
- fv0 :
-
Pure shear strength of masonry
- f v0d :
-
Shear strength of masonry under zero compression stress
- f * v0,d :
-
Equivalent shear strength of masonry under zero compression stress
- H:
-
Panel height
- Hp :
-
Conventional horizontal axial force given by the code
- L:
-
Panel width
- N:
-
Horizontal axial force inside the spandrel
- R:
-
Inclined compression force of the strut
- t:
-
Panel thickness
- V:
-
Shear force
- Vcr :
-
Shear strength due to rocking
- Vcr, mod :
-
Revised shear strength due to rocking
- Vp :
-
Shear strength due to toe-crushing of the strut
- Vt :
-
Pure shear strength
- VTC :
-
Turnšek and Čačovič shear strength
- VTC, mod :
-
Revised Turnšek and Čačovič shear strength
- VTC, lim :
-
Mann and Müller shear strength
- VTC, lim, mod :
-
Revised Mann and Müller shear strength
- Vth, mod :
-
Revised sliding shear strength
- Vt,mod :
-
Revised pure shear strength
- α:
-
Inclination of the strut
- β:
-
Coefficient of slenderness
- \(\varphi\) :
-
Inclination of the diagonal of the panel
- ϕ:
-
Interlocking coefficient
- μ:
-
Local friction coefficient of the bed joints
- μ* :
-
Equivalent friction coefficient
- σ0 :
-
Normal stress in horizontal direction
- σy :
-
Average normal stress on the joints
References
Benedetti D, Carydis P, Pezzoli P (1998) Shaking table tests on 24 simple masonry buildings. Earth Eng Struct Dyn 27:67–90
Beyer K, Dazio A (2012) Quasi-static cyclic tests on masonry spandrels. Earth Spectra 28(3):907–929
Beyer K, Mangalathu S (2013) Review of strength models for masonry spandrels. Bull Earth Eng 11:521–542
Calderoni B, Cordasco EA, Lenza P (2010) Structural behavior of masonry spandrel in masonry buildings subjected to seismic actions: experimental investigation. Ing Sismica 4:49–68 ((in Italian))
Calderoni B, Cordasco EA, Lenza P, Pacella G (2014) Experimental tests for the evaluation of shear strength of spandrels in ordinary masonry. In: Proceedings of the 9th international masonry conference, Guimaraes, Portugal
Cattari S, Lagomarsino S (2008) A strength criterion for the flexural behavior of spandrels in un-reinforced masonry walls. In: Proceedings of 14th world conference on earthquake engineering, WCEE. Beijing, China
D’Ambra C, Lignola GP, Prota A (2021) Simple method to evaluate FRCM strengthening effects on in-plane shear capacity of masonry walls. Constr Build Mater 268:121125
EQ Asses (2017) Part C: unreinforced masonry buildings. The seismic assessment of existing buildings. Technical Guidelines for Engineering Assessment, New Zealand
Eurocode 6 EN 1996-1-1 (2005) Design of masonry structures—part 1-1: general rules for reinforced and unreinforced masonry structures. Brussels. Belgium
Eurocode 8 EN 1998-3 (2005) Design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. CEN (European Committee for Standardization). Brussels. Belgium
FEMA 306 - ATC (1998) Evaluation of earthquake damage concrete and masonry wall buildings. Basic procedures Manual. Applied Technology Council, Washington
Fiengo G, Guerriero L (1988) Traditional Neapolitan masonries. Chronology of masonry fabrics from XVI to XIX century. Naples, Arti Tipografiche (in Italian)
Foraboschi P (2009) Coupling effect between masonry spandrels and piers. Mat Struct 42:279–300
Gattesco N, Macorini L, Dudine A (2016) Experimental response of clay brick masonry spandrels under in-plane cyclic loading. J Struct Eng 142(2):04015146
Graziotti F, Magenes G, Penna A (2012) Experimental cyclic behavior of stone masonry spandrels. In: Proceedings of 15th world conference on earthquake engineering, WCEE, Lisbon, Portugal
IBC08 - Italian Building Code 2008, D.M. 14/01/2008. Technical code for constructions. Ministry of Transportation and Infrastructures, Italy (in Italian)
IBC18 - Italian Building Code 2018, D.M. 17/01/2018. Technical code for constructions. Ministry of Transportation and Infrastructures, Italy (in Italian)
ISR19 - Italian Seismic Recommendations n.7/2019. Instruction for the use of Technical code for Constructions, published by DM 17/01/2018. Ministry of Infrastructures and Transportation, Italy (in Italian)
Knox CL, Dizhur D, Ingham JM (2018) Two-story perforated URM wall subjected to cyclic in-plane loading. J Struct Eng 144(5):04018037
Krawinkler H (1979) Possibilities and limitations of scale-model testing in earthquake engineering. In: Proceedings of the 2nd US national conference on earthquake engineering, Stanford, California
Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799
Mann W, Mueller H (1973) Bruchkriterien für querkraftbeanspruchtes Mauerwerk und ihre Anwendung auf gemauerte Windscheiben. Die Bautechnik, Heft 12. Berlin.
Mann W, Mueller H (1980) Failure of shear-stressed masonry - An enlarged theory, tests and applications to shear-walls. In: Proceedings of the international symposium on load-bearing Brickwork, London, pp 1–13
OPCM 3274 (2003) First general criteria for seismic classification of national territory and technical rules for construction in seismic-prone area. Presidency of Council Ministry, Rome (in Italian)
Ortolani B, Vignoli A (2011) Seismic behavior of masonry spandrels: experimental tests. In: Proceedings of 3rd wonder masonry conference, Florence, Italy (in Italian)
Ottonelli D, Manzini CF, Marano C, Cordasco EA, Cattari S (2021) A comparative study on a complex URM building: part I—sensitivity of the seismic response to different modelling options in the equivalent frame model. Bull Earth Eng. https://doi.org/10.1007/s10518-021-01128-7
Parisse F, Cattari S, Marques R et al (2021) Benchmarking the seismic assessment of unreinforced masonry buildings from a blind prediction test. Structures 31:982–1005
Rinaldin G, Amadio C, Gattesco N (2017) Review of experimental cyclic tests on unreinforced and strengthened masonry spandrels and numerical modelling of their cyclic behavior. Eng Struct 132:609–623
Sandoli A, Pacella G, Lignola GP, Calderoni B, Prota A (2020a) FRP-reinforced masonry spandrels: experimental campaign on reduced-scale specimens. Constr Build Mater 261:119965
Sandoli A, Musella C, Lignola GP, Calderoni B, Prota A (2020b) Spandrel panels in masonry buildings: effectiveness of the diagonal strut model within the equivalent frame mode. Structures 27:879–893. https://doi.org/10.1016/j.istruc.2020.07.001
Senaldi IE, Guerrini G, Comini P, Graziotti F, Penna A, Beyer K, Mageners G (2020) Experimental seismic performance of a half-scale stone masonry building aggregate. Bull Earth Eng 18:609–643
Tomazevic M (1999) Earthquake-resistant design of masonry buildings. Series on innovation in structures and construction, vol 1. Imperial College Press, London
Turnsek V, Cacovic F (1970) Some experimental results on the strength of brick masonry walls. In: Proceedings of the 2nd international brick mas conference, stoke-on-tent, pp 149–156
Xin R, Ma P (2021) Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay. Constr Buil Mater 282:122565
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing Interests
The authors have not disclosed any competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Author | Scale | Material | Name | Shape | Reinf | Type of test | H (mm) | L (mm) | H/L (–) | t (mm) | fb (MPa) | ftb (MPa) | tb (mm) | hb (mm) | lb (mm) | fmh (Mpa) | ft (MPa) | fv0 (MPa) | μ (–) | c (–) | Vexp (N) | Failure mechanism |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calderoni et al. (2010) | 1:10 | Tuff masonry | OM13 | Rect. | Horiz. tie | Cyclic | 70 | 140 | 0.5 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 544 | X-D + HS |
OM14 | Cyclic | 70 | 140 | 0.5 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 516 | X-D + HS | |||||
OM15 | Monot. | 70 | 140 | 0.5 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 600 | X-D + HS | |||||
OM1 | Cyclic | 100 | 140 | 0.71 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 490 | X-D | |||||
OM2 | Cyclic | 100 | 140 | 0.71 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 479 | X-D | |||||
OM3 | Monot. | 100 | 140 | 0.71 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 509 | X-D | |||||
OM9 | Monot. | 150 | 140 | 1.07 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 1001 | X-D | |||||
OM10 | Cyclic | 150 | 140 | 1.07 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 880 | X-D | |||||
OM11 | Cyclic | 150 | 140 | 1.07 | 45 | 4.70 | 0.47 | 20 | 20 | 40 | 2.5 | 0.0925 | 0.093 | 0.4 | 0.093 | 971 | X-D | |||||
Calderoni et al. (2010) | 1:10 | Tuff masonry | EM9 | Rect. | Horiz tie | Monot. | 70 | 140 | 0.5 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 1389 | X-T |
EM13 | Cyclic | 70 | 140 | 0.5 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 904 | X-T | |||||
EM14 | Cyclic | 70 | 140 | 0.5 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 1109 | X-T | |||||
EM10 | Monot. | 100 | 140 | 0.71 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 1496 | X-D | |||||
EM15 | Cyclic | 100 | 140 | 0.71 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 1434 | X-D | |||||
EM16 | Cyclic | 100 | 140 | 0.71 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 1654 | X-D | |||||
EM11 | Monot. | 150 | 140 | 1.07 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 2281 | X-D | |||||
EM18 | Cyclic | 150 | 140 | 1.07 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 2937 | X-D | |||||
EM17 | Cyclic | 150 | 140 | 1.07 | 75 | 3.91 | 0.39 | 20 | 35 | 25 | 2.15 | 0.144 | 0.144 | 0.4 | 0.144 | 3258 | X-D | |||||
Calderoni et al. (2010) | 1:10 | Tuff masonry | NM7 | Rect. | Horiz. tie | Monot. | 70 | 140 | 0.5 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 1109 | X-T |
NM8 | Cyclic | 70 | 140 | 0.5 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 871 | X-T | |||||
NM12 | Cyclic | 70 | 140 | 0.5 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 1098 | X-T | |||||
NM5 | Monot. | 100 | 140 | 0.71 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 1094 | X-D | |||||
NM4 | Monot. | 100 | 140 | 0.71 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | – | X-D | |||||
NM6 | Cyclic | 100 | 140 | 0.71 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 1263 | X-D | |||||
NM1 | Monot. | 150 | 140 | 1.07 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 2451 | X-D | |||||
NM2 | Cyclic | 150 | 140 | 1.07 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 2217 | X-D | |||||
NM3 | Cyclic | 150 | 140 | 1.07 | 65 | 3.91 | 0.39 | 20 | 25 | 40 | 1.6 | 0.144 | 0.144 | 0.4 | 0.144 | 2759 | X-D | |||||
Calderoni et al. (2014) | 1:10 | Tuff masonry | OMHA22 | H | Horiz. tie | Monot. | 70 | 140 | 0.50 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 595 | X-T |
OMHA16 | Monot. | 70 | 140 | 0.50 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 595 | X-T | |||||
OMHA19 | Monot. | 70 | 140 | 0.50 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 612 | X-T | |||||
OMHA23 | Monot. | 100 | 140 | 0.71 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 802 | X-D | |||||
OMHA17 | Monot. | 100 | 140 | 0.71 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 491 | X-D | |||||
OMHA20 | Monot. | 100 | 140 | 0.71 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 675 | X-D | |||||
OMHA24 | Monot. | 150 | 140 | 1.07 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 1294 | X-D | |||||
OMHA18 | Monot. | 150 | 140 | 1.07 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 1046 | X-D | |||||
OMHA21 | Monot. | 150 | 140 | 1.07 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 897 | X-D | |||||
OMHD10 | Monot. | 70 | 140 | 0.50 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 664 | X-T | |||||
OMHD13 | Cyclic | 70 | 140 | 0.50 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 750 | X-T | |||||
OMHD11 | Monot. | 100 | 140 | 0.71 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 861 | X-T | |||||
OMHD14 | Cyclic | 100 | 140 | 0.71 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 479 | X-D | |||||
OMHD12 | Monot. | 150 | 140 | 1.07 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 1202 | X-D | |||||
OMHD15 | Cyclic | 150 | 140 | 1.07 | 45 | 3.9 | 0.39 | 20 | 20 | 45 | 2.7 | 0.10 | 0.100 | 0.4 | 0.100 | 1052 | X-D | |||||
Beyer and Dazio (2012) | Full scale | Brick masonry | TUA | H | Horiz. tie | Cyclic | 1260 | 1180 | 1.07 | 380 | 36.2 | 8.5 | 120 | 60 | 250 | 18 | 0.35 | 0.350 | 0.85 | 0.35 | 80,000 | R + X-D |
TUB | Cyclic | 1260 | 1180 | 1.07 | 380 | 35.5 | 7 | 120 | 60 | 250 | 18 | 0.35 | 0.350 | 0.85 | 0.35 | 80,000 | R | |||||
TUC | Cyclic | 1260 | 1180 | 1.07 | 380 | 31.3 | 6.5 | 120 | 60 | 250 | 14.7 | 0.18 | 0.180 | 0.73 | 0.18 | 75,000 | X-Dr | |||||
TUD | Cyclic | 1260 | 1180 | 1.07 | 380 | 30.2 | 5 | 120 | 60 | 250 | 14.7 | 0.18 | 0.180 | 0.73 | 0.18 | 75,000 | X-D | |||||
Graziotti et al (2012) | Full-scale | Double leaf stone masonry | S1 | H | None | Cyclic | 1200 | 1200 | 1.00 | 320 | 5 | 0.25 | 3.28 | 0.137 | 0.137 | 0.577 | 0.137 | 32,000 | R | |||
S2 | Horiz. tie | Cyclic | 1200 | 1200 | 1.00 | 320 | 5 | 0.25 | 3.28 | 0.137 | 0.137 | 0.577 | 0.137 | 50,000 | X-D | |||||||
Rinadin et al. (2017) | Full scale | Brick masonry | MS1 | H | None | Cyclic | 1220 | 1050 | 1.16 | 380 | 44 | 8.8 | 120 | 55 | 250 | 7 | 0.190 | 0.190 | 0.4 | 0.190 | 70,000 | R + X-D |
Brick masonry | MS2 | None | Cyclic | 1220 | 1050 | 1.16 | 380 | 44 | 8.8 | 120 | 55 | 250 | 7 | 0.220 | 0.220 | 0.4 | 0.220 | 50,000 | X-D | |||
Brick masonry | MS3 | None | Cyclic | 1220 | 1050 | 1.16 | 380 | 47 | 9.4 | 120 | 55 | 250 | 6.8 | 0.220 | 0.220 | 0.4 | 0.220 | 45,000 | R + X-D | |||
Rubble stone | MS4 | None | Cyclic | 1200 | 1000 | 1.20 | 400 | 5 | 1 | 3.6 | 0.100 | 0.100 | 0.4 | 0.100 | 28,000 | R | ||||||
Brick masonry | MS1r | Horiz. tie | Cyclic | 1220 | 1050 | 1.16 | 380 | 44 | 8.8 | 120 | 55 | 250 | 7 | 0.190 | 0.190 | 0.4 | 0.190 | 95,000 | X-D | |||
Brick masonry | MS2r | Horizontal tie | Cyclic | 1220 | 1050 | 1.16 | 380 | 44 | 8.8 | 120 | 55 | 250 | 7 | 0.220 | 0.220 | 0.4 | 0.220 | 65,000 | X-D | |||
Rubble stone | MS4r | Horizontal tie | Cyclic | 1200 | 1000 | 1.20 | 400 | 5 | 1 | 3.6 | 0.100 | 0.100 | 0.4 | 0.100 | 60,000 | X-D |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sandoli, A., Calderoni, B., Lignola, G.P. et al. Effect of the axial force on shear and flexural strength of masonry spandrels. Bull Earthquake Eng 21, 2947–2985 (2023). https://doi.org/10.1007/s10518-023-01637-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10518-023-01637-7