Skip to main content
Log in

Geological and geotechnical investigation of the seismic ground response characteristics in some urban and suburban sites in Chile exposed to large seismic threats

Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The central area of Chile’s Valparaiso Region has been classified as a seismic gap for a major earthquake, which makes it very important to understand the seismic hazard of the zone. Generally, seismic codes consider a qualitative classification of sites to estimate the possible damage in the case of an earthquake scenario. Estimating the values of acceleration could be very important to prevent damages and increase preparedness for these rare events. In this research, a qualitative and quantitative estimation of seismic hazard is performed in the study area (Valparaiso region between Papudo and San Antonio 32°–34° S). This is achieved through an integrated and relatively economical approach which considers the information from Geology, Geophysical experiments (Gravity and seismic methods), and Geotechnical analyses. The results of the geophysical survey and geology information allow dividing the zone into five site types through a new proposal of site classification that depends not only on the Vs30, but also on the sites predominant period (T0), which is an innovation of this work for the Chilean code. The Peak Ground Acceleration (PGA) values in the study zone were estimated using a Ground Motion Predictive Equation developed for the Chilean subduction zone. Additionally, we consider three different seismic scenarios according to the history of events in Central Chile. The results of this quantitative analysis show PGA values up to 0.52 g for the median and 1.2 g for the 84th percentile of the scenarios. Overall, the highest accelerations (PGA) are in zones with low shear wave velocities (< 500 m/s), a long predominant period (> 0.4 s) and where geology establishes the presence of low stiffness soils. The comparison of response spectra from the model against records from 2010 Maule and 1985 Valparaiso earthquakes shows available models tend to overpredict the intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Modified from Bravo et al. 2019 and references in). White rectangles represent the three seismic asperities near the study zone used in this work. Here, these asperities are named as I, II and III

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Aki K (1984) Asperities, barriers, characteristic earthquakes and strong motion prediction. JGR. https://doi.org/10.1029/JB089iB07p05867

    Article  Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171(3):329–334. https://doi.org/10.1016/S0012-821X(99)00173-9

    Article  Google Scholar 

  • ASTM D 6067-10 (2010). Standard guide for using the electronic cone penetrometer for environmental site characterization. https://shop.standards.ie/en-ie/standards/ASTM-D-6067-2010-152018_SAIG_ASTM_ASTM_359837/

  • Bala A (2014) Quantitative modelling of seismic site amplification in an earthquake-endangered capital city: Bucharest, Romania. Nat Hazards. https://doi.org/10.1007/s11069-013-0705-z

    Article  Google Scholar 

  • Bastías N, Montalva GA (2016) Chile strong ground motion flatfile. Earthq Spectra 32:4. https://doi.org/10.1193/102715EQS158DP

    Article  Google Scholar 

  • Becerra A, Podestá L, Monetta R, Sáez E, Leyton F, Yañez G (2015) Seismic microzoning of Arica and Iquique, Chile. Nat Hazards 79(1):567–586. https://doi.org/10.1007/s11069-015-1863-y

    Article  Google Scholar 

  • Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquake along the central Chile subduction zone. J S Am Earth Sci 11:115–129. https://doi.org/10.1016/S0895-9811(98)00005-4

    Article  Google Scholar 

  • Bettig B, Bard P, Scherbaum F, Riepl J, Cotton F, Cornou C, Hatzfeld D (2001) Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): application to the Grenoble area. Boll Geofis Teor Appl 42:281–304

    Google Scholar 

  • Bohidar RN, Sullivan JP, Hermance JF (2001) Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer river basin. Ground Water 39(5):729–736. https://doi.org/10.1111/j.1745-6584.2001.tb02363.x

    Article  Google Scholar 

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthq Spectra 10:617–653

    Article  Google Scholar 

  • Bravo F, Koch P, Riquelme S, Fuentes M, Campos J (2019) Slip distribution of the 1985 Valparaíso earthquake constrained with seismic deformation data. Seismol Res Lett 90(5):1792–1800. https://doi.org/10.1785/0220180396

    Article  Google Scholar 

  • Carrasco O, Núñez C (2013) Microzonificación sísmica de la ciudad de Viña del Mar. Tesis para optar al grado de Magister en Ciencias. Universidad Técnica Federico Santa María. Valparaíso. (In Spanish)

  • Carvajal M, Cisternas M, Catalán PA (2017a) Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of Metropolitan Chile. J Geophys Res Solid Earth 122(5):3648–3660. https://doi.org/10.1002/2017JB014063

    Article  Google Scholar 

  • Carvajal M, Cisternas M, Gubler A, Catalán PA, Winckler P, Wesson RL (2017b) Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: implications for source depth constraints. J Geophys Res Solid Earth 122(1):4–17. https://doi.org/10.1002/2016JB013269

    Article  Google Scholar 

  • Castellaro S, Mulargia F, Rossi PL (2008) Vs30: proxy for seismic amplification? Seismol Res Lett 79(540):543. https://doi.org/10.1785/gssrl.79.4.540

    Article  Google Scholar 

  • CEN (European Committee for Standardization) (2004) Eurocode 8: design of structures for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. EN1998-1:2004. Brussels, Belgium

  • CEN/TC 250/SC 8 (2021) Eurocode 8: Earthquake resistance design of structures. EN1998-1-1 working draft N1017 18-02-2021

  • Chavez-Garcia FJ, Cuenca J (1998) Site effects and microzonation in Acapulco. Earthq Spectra 14(1):75–93. https://doi.org/10.1193/1.1585989

    Article  Google Scholar 

  • Cifuentes I (1989) The 1960 Chilean earthquakes. J Geophys Res 94:665–680. https://doi.org/10.1029/JB094iB01p00665

    Article  Google Scholar 

  • Cisternas M, Carvajal M, Wesson R, Ely LL, Gorigoitia N (2017) Exploring the historical earthquakes preceding the giant 1960 Chile earthquake in a time-dependent seismogenic zone. Bull Seismol Soc Am 107(6):2664–2675. https://doi.org/10.1785/0120170103

    Article  Google Scholar 

  • Comte D, Eisenberg A, Lorca E, Pardo M, Ponce L, Saragoni R et al (1986) The 1985 central Chile earthquake: a repeat of previous great earthquakes in the region? Science 233(4762):449–453. https://doi.org/10.1126/science.233.4762.449

    Article  Google Scholar 

  • Del Valle F, Marquadt C, Elgueta S, Valdivia S (2017) Seismic influence in the quaternary uplift of the central Chile coastal margin, preliminary results. AGU Fall Meeting 2017, G53A-0759

  • Dobry R, Borchert R, Crouse C, Idriss I, Joyner W, Martin G, Power M, Rinne E, Seed R (2000) New site coefficients and site classification system used in recent building seismic code provisions. Earthq Spectra 16(1):41–67

    Article  Google Scholar 

  • Dura T, Cisternas M, Horton BP, Ely LL, Nelson AR, Wesson RL, Pilarczy JE (2015) Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile. Quat Sci Rev 113:93–111. https://doi.org/10.1016/j.quascirev.2014.10.015

    Article  Google Scholar 

  • Eker A, Akgün H, Kokar M (2012) Local site characterization and seismic zonation study by utilizing active and passive surface wave methods: a case study for the northern side of Ankara, Turkey. Eng Geol 151:64–81. https://doi.org/10.1016/j.enggeo.2012.09.002

    Article  Google Scholar 

  • Eker A, Kokar M, Akgün H (2015) Evaluation of site effect within the tectonic basin in the northern side of Ankara. Eng Geol 192:76–91. https://doi.org/10.1016/j.enggeo.2015.03.015

    Article  Google Scholar 

  • Fernández I (2012) Estimación determinística de la amenaza sísmica para la región de Valparaíso, Chile central (32°–34° S). Tesis para optar al título de Geógrafo con mención en Gestión y Ordenamiento Territorial. Universidad de Playa Ancha, Valparaíso, Chile

  • Fuenzalida F (2015) Susceptibilidad de remociones en masa en cuenca las Zorras, afectada por catástrofe incendiaria, comuna de Valparaíso. Memoria para optar al título de Geólogo. Universidad de Chile, Santiago, Chile

  • Gana P, Tosdal RM (1996) Geocronología U-Pb y K-Ar en intrusivos del Paleozoico y Mesozoico de la Cordillera de la Costa, Región de Valparaíso, Chile. Revis Geol Chile 23(2):151–164. https://doi.org/10.5027/andgeoV23n2-a04

    Article  Google Scholar 

  • Hayashi (2008) Development of the surface-wave methods and its application to site investigations. Ph.D Dissertation

  • Humire F, Sáez E, Leyton F, Yañez G (2015) Combining active and passive multi-channel analysis of surface waves to improve reliability of V(S,30) estimation using stard equipment. Bull Earthq Eng 13(5):1303–1321. https://doi.org/10.1007/s10518-014-9662-5

    Article  Google Scholar 

  • Kelleher J (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77(11):2087. https://doi.org/10.1029/JB077i011p02087

    Article  Google Scholar 

  • Kokusho T, Sato K (2008) Surface-to-base amplification evaluated from KiK-net vertical array strong motion records. Soil Dyn Earthq Eng 28(707):716. https://doi.org/10.1016/j.soildyn.2007.10.016

    Article  Google Scholar 

  • Kværna T, Ringdahl F (1986) Stability of various fk-estimation techniques. In: Semiannual technical summary. NORSAR Scientific Report 1-86/87

  • Lacoss R, Kelly E, Toksöz M (1969) Estimation of seismic noise structure using arrays. Geophys 34:21–23. https://doi.org/10.1190/1.1439995

    Article  Google Scholar 

  • Lay T, RuffLJ, KH (1982) The asperity model and the nature of large subduction zone earthquakes. Earthq Predict Res 1:3–71

    Google Scholar 

  • Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR (2010) Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys Res Lett 37(13):L13301. https://doi.org/10.1029/2010GL043379

    Article  Google Scholar 

  • Lay T, Yue H, Brodsky E, An C (2014) The April 1, 2014 Iquique, Chile Mw 8.1 earthquake rupture sequence. Geophys Res Lett 41:3818–3825. https://doi.org/10.1002/2014GL060238

    Article  Google Scholar 

  • Lee VW, Trifunac MD (2010) Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dyn Earthq Eng 30:1250–1258. https://doi.org/10.1016/j.soildyn.2010.05.007

    Article  Google Scholar 

  • Leyton F, Ruiz S, Sepúlveda SA, Contreras JP, Rebolledo S, Astroza M (2013) Microtremors’ HVSR and its correlation with surface geology and damage observed after the 2010 Maule earthquake (Mw 8.8) at Talca and Curicó, Central Chile. Eng Geol 161:26–33. https://doi.org/10.1016/j.enggeo.2013.04.009

    Article  Google Scholar 

  • Leyton F, Ramírez S, Vásquez A (2012) Uso y limitaciones de la Técnica de Nakamura en la clasificación sísmica de suelos. Congreso Chileno de Geotecnia, Volume VII

  • Luzi L, Puglia R, Pacor F, Gallipoli MR, Bindi D, Mucciarelli M (2011) Proposal for a soil classification based on parameters alternative or complementary to Vs, 30. Bull Earthq Eng 9:1877–1898. https://doi.org/10.1007/s10518-011-9274-2

    Article  Google Scholar 

  • Maringue J, Yáñez G, Sáez E, Podestá L, Figueroa R, Perez N, Lira E (2017) Dynamic characterization of the Mejillones Basin in northern Chile, using combined geophysical field measurements. Eng Geol 233:238–254. https://doi.org/10.1016/j.enggeo.2017.12.016

    Article  Google Scholar 

  • Maringue J, Sáez E, Yañez G (2021) An empirical correlation between the residual gravity anomaly and the h/v predominant period in urban areas and its dependence on geology in Andean forearc basins. Appl Sci. https://doi.org/10.3390/app11209462

    Article  Google Scholar 

  • Montalva GA, Chávez-Garcia FJ, Tassara A, Jara DM, Weisser, (2016) Site effects and building damage characterization in concepción after the Mw 8.8 Maule earthquake. Earthq Spectra 32(3):1469–1488. https://doi.org/10.1193/101514EQS158M

    Article  Google Scholar 

  • Montalva G, Bastías N, Rodríguez-Marek A (2017) Ground-motion prediction equation for the Chilean subduction zone. Bull Seismols Soc Am 107(2):901–911. https://doi.org/10.1785/0120160221

    Article  Google Scholar 

  • Montalva G, Bastías N, Leyton F (2021) Strong ground motion prediction model for PGV and spectral velocity for the Chilean subduction zone. Bull Seismol Soc Am. https://doi.org/10.1785/0120210037

    Article  Google Scholar 

  • Moreno M, Bolte J, Klotz J, Melnick D (2009) Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake. Geophys Res Lett 36:L16310. https://doi.org/10.1029/2009GL039276

    Article  Google Scholar 

  • Moreno M, Melnick D, Rosenau M, Baez J, Klotz J, Oncken O, Tassara A, Che J, Bataille K, Bevis M, Socquet A (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321:152–165

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railw Tech Res Inst 30:25–33

    Google Scholar 

  • NCH 433 mod. D.S. Nº 61 MINVU (2011) Reglamento que fija el diseño sísmico de edificios y deroga Decreto Nº 117, de 2010 (in Spanish), Ministerio de Vivienda y Urbanismo. Diario Oficial 13 de Diciembre del 2011

  • NEHRP Building Seismic Safety Council (2003) NEHRP Recommended provisions for seismic regulations for new buildings and other structures, Part1: Provisions, FEMA 368, Federal Emergency Management Agency, Washingtossn, D.C.

  • Nishenko SP (1985) Seismic potential for large great interplate earthquakes along the Chilean Southern Peruvian margins of South America: a quantitative reappraisal. J Geophys Res 90(B5):3589–3615. https://doi.org/10.1029/JB090iB05p03589

    Article  Google Scholar 

  • Nishenko SP (1991) Circum-pacific seismic potential: 1989–1999. Pure Appl Geophys PAGEOPH 135(2):169–259. https://doi.org/10.1007/BF00880240

    Article  Google Scholar 

  • Paolucci R (2019) Site classification and site effects in the seismic norms: work in progress for the revisionof Eurocode 8. Department of Civil and Environmental Engineering, Politecnico di Milano, Italy

  • Paolucci R, Aimar M, Ciancimino A, Dotti M, Foti S, Lanzano G, Mattevi P, Pacor F, Vanini M (2021) Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1–1. Bull Earthq Eng 19:4199–4234. https://doi.org/10.1007/s10518-021-01118-9

    Article  Google Scholar 

  • Pitilakis K, Gazepis C, Anastasiadis A (2004) Design response spectra and soil classification for seismic code provisions. In: Proceedings of 13th WCEE. Vancouver, Canada

  • Pitilakis K, Riga E, Anastasiadis A (2013) New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bull Earthq Eng 11(4):925–966

    Article  Google Scholar 

  • Pitilakis K, Riga E, Anastasiadis A, Fotopoulou S, Karafagka S (2019) Towards the revision of EC8: proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors. Soil Dyn Earthq Eng 126:105–137

    Article  Google Scholar 

  • Plafker G, Savage JC (1970) Mechanism of the Chilean earthquake of May 21 and 22 1960. Geol Soc Am Bull 81:1001–1030

    Article  Google Scholar 

  • Podestá L, Sáez E, Yáñez G, Leyton F (2019) Geophysical study and 3-d modeling of site effects in Viña del Mar, Chile. Earthq Spectra 35(3):1329–1349. https://doi.org/10.1193/080717EQS155M

    Article  Google Scholar 

  • Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech J 27(1):151–158. https://doi.org/10.1139/t90-014

    Article  Google Scholar 

  • Robertson PK, Cabal KL (2015) Guide to cone penetration testing for geotechnical engineering, 6th edn. Gregg Drilling Testing Inc, Signal Hill

    Google Scholar 

  • Rodriguez-Marek A, Bray JD, Abrahamson NA (2001) An empirical geotechnical seismic site response procedure. Earthq Spectra 17(65):87. https://doi.org/10.1193/1.1586167

    Article  Google Scholar 

  • Ruiz S, Madariaga R (2018) Historical and recent large Megathrust earthquakes in Chile. Tectonophysics 733:37–56. https://doi.org/10.1016/j.tecto.2018.01.015

    Article  Google Scholar 

  • Ruiz S, Kausel E, Campos J, Saragoni JR, Madariaga R (2011) Identification of high frequency pulses from earthquake asperities along Chilean subduction zone using strong motion. Pure Appl Geophys 168(1/2):125–139. https://doi.org/10.1007/s00024-010-0117-x

    Article  Google Scholar 

  • Sambridge M (1999) Geophysical inversion with neighborhood algorithm—I. Searching the parameter space. Geophys J Int 138:479–494. https://doi.org/10.1046/J.1365-246X.1999.00876.X

    Article  Google Scholar 

  • Scholz C, Campos J (2011) The seismic coupling of subduction zones revsited. J Geophys Res. https://doi.org/10.1029/2011JB009003

    Article  Google Scholar 

  • Seed HB, Ugas C, Lysmer J (1976) Site-dependent spectra for earthquake-resistance design. Bull Seismol Soc Am 66(1):221–243

    Article  Google Scholar 

  • Semblat J, Pecker A (2009) Waves and vibrations in soils. Instituto Universitario di Studi Superiori di Pavia

  • Stockwell R (2007) A basis for efficient representation of the S-transform. Digit Signal Process 17(1):371–393. https://doi.org/10.1016/j.dsp.2006.04.006

    Article  Google Scholar 

  • Tapia P, Roldán W, Villacis C (2002) Vulnerabilidad sísmica de las ciudades del norte de Chile: Arica, Antofagasta y Copiapó. VIII Jornadas Chilenas de Sismología e Ingeniería Antisísmica, Chile}

  • Telford WM, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tokimatsu K (1997) Geotechnical site characterization using surface waves. In: Ishihara (ed) Balkema Proceedings of the 1st international conference earthquake geotechnical engineering, pp 1333–1368

  • Verdugo R (2019) Seismic site classification. Soil Dyn Earthq Eng 124:317–329. https://doi.org/10.1016/j.soildyn.2018.04.045

    Article  Google Scholar 

  • Verdugo R, Ochoa-Cornejo F, Gonzalez J, Valladares G (2018) Site effect and site classification in areas with large earthquakes. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2018.02.002

    Article  Google Scholar 

  • Wathelet M (2005) Array recordings of ambient vibrations: surface-wave inversion. Liége University, Belgium

    Google Scholar 

  • Wathelet M (2008) An improved neighborhood algorithm: ssparameter conditions and dynamic scaling. Geophys Res Lett 35:L09301. https://doi.org/10.1029/2008GL033256

    Article  Google Scholar 

  • Wathelet M (2002–2011) GEOPSY packages (Version 2.5.0) [software]: retrieved from http://www.geopsy.org/download.php

  • Yaghmaei-Sabegh S, Hassani B (2020) Investigation of the relation between Vs30 and site characteristics of Iran based on horizontal-to-vertical spectral ratios. Soil Dyn Earthq Eng 128:105899. https://doi.org/10.1016/j.soildyn.2019.105899

    Article  Google Scholar 

  • Watson DF, Phili GM (1985) A refinement of inverse distance weighted interpolation. Geoprocessing 2:315–327

    Google Scholar 

  • Yáñez G, Muñoz M, Flores-Aqueveque V, Bosch A (2015) Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geol 42(2):147–172. https://doi.org/10.5027/andgeoV42n2-a01

    Article  Google Scholar 

  • Yañez G, Pérez-Estay N, Araya-Vargas J, Sanhueza J, Figueroa R, Maringue J, Rojas T (2020) Shallow anatomy of the San Ramón Fault (Chile) constrained by geophysical methods: implications for its role in the Andean deformation. Tectonics 39(8). https://doi.org/10.1029/2020TC006294

  • Ye L, Lay T, Kanamori H, Koper KD (2015) Rapidly estimated seismic source parameters for the 16 september 2015 Illapel, Chile Mw 8.3 earthquake. Pure Appl Geophys 173:321–332. https://doi.org/10.1007/s00024-015-1202-y

    Article  Google Scholar 

  • Yilar E, Baise LG, Ebel JE (2017) Using H/V measurements to determine depth to bedrock and Vs30 in Boston. Mass Eng Geol 217:12–22. https://doi.org/10.1016/j.enggeo.2016.12.002

    Article  Google Scholar 

Download references

Acknowledgements

This study is based upon work supported partially by the CONICYT/ FONDEF project D10E1027, by CIGIDEN (National Research Center of Integrated Natural Disaster Management) CONICYT/FONDAP 15110017 and by Millennium Nucleus CYCLO (The Seismic Cycle Along Subduction Zones) funded by the Millennium Scientific Initiative (ICM) of the Chilean Government grant NC160025

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Sáez.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maringue, J., Mendoza, L., Sáez, E. et al. Geological and geotechnical investigation of the seismic ground response characteristics in some urban and suburban sites in Chile exposed to large seismic threats. Bull Earthquake Eng 20, 4895–4918 (2022). https://doi.org/10.1007/s10518-022-01401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-022-01401-3

Keywords

Navigation