Skip to main content
Log in

A probabilistic seismic hazard model for North Africa

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

African seismicity is predominantly localized along the East African Rift System (EARS), which is the major active tectonic feature of Sub-Saharan Africa. Besides the EARS, however, significant seismicity also occurs along a wide belt bounding the Mediterranean coastline. This tectonically active region extends discontinuously from Morocco to Egypt and its activity is controlled by the complex interaction between the Nubian and Eurasian plates, varying from transpression in the Atlas orogen in the west to transtension in the east. A record of large earthquake events is documented for the whole region, some of them causing moderate to severe levels of damage, mostly because of the high vulnerability of local buildings and structures, a condition which is still largely persistent in many areas. Currently, a number of seismic hazard models exist at local and national scales for North Africa, developed within independent projects and created using inhomogeneous data sources and different processing techniques. Unfortunately, such diversity makes their direct comparison problematic, obscuring the differences in seismic hazard across neighbouring areas and preventing the development of comprehensive long-term risk mitigation strategies. In fact, the last effort to produce a homogenized model for the whole Africa continent dates back to the GSHAP project, which is almost 20 years old. The creation of a unique seismic hazard model for North Africa, uniform across countries, is therefore a main concern. Since its inception, the Global Earthquake Model Foundation (GEM) is committed to the creation of a worldwide mosaic of high-quality, reproducible and openly accessible seismic hazard models, uniformly represented using the format adopted by the OpenQuake engine (OQ), a state-of-the-art, free and open-source software package for seismic hazard and risk assessment. We describe the development of a new comprehensive PSHA model for North Africa using GEM tools. The source model combines active faults and distributed seismicity, the former constrained from published geological descriptions and geodetic data, while the latter from the harmonisation of published earthquake catalogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdunaser KM, McCaffrey KJW (2015) Tectonic history and structural development of the Zallah-Dur al Abd Sub-basin, western Sirt Basin, Libya. J Struct Geol 73:33–48

    Google Scholar 

  • Adly A, Poggi V, Fäh D, Hassoupa A, Omranb A (2017) Combining active and passive seismic methods for the characterization of urban sites in Cairo, Egypt. Geophys J Int 210(1):428–442

    Google Scholar 

  • Aki K, Richards P (1980). Quantitative seismology, theory and methods, vols. I and II. W.H. Freeman, San Francisco

  • Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extendedsource crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12:359–387

    Google Scholar 

  • Albini P, Musson RMW, Rovida A, Locati M, Gomez Capera AA, Viganò D (2014) The global earthquake history. Earthq Spectra 30(2):607–624

    Google Scholar 

  • Al-Heety EA, Eshwehdi A (2006) Seismicity of the Northwestern Region of Libya: an example of continental seismicity. Seismol Res Lett 77(6):691–696

    Google Scholar 

  • Álvarez-Gómez JA (2014) FMC: a one-liner Python program to manage, classify and plot focal mechanisms. Geophys Res Abstracts 16:EGU2014-10887

  • Ambraseys NN (1962) The seismicity of Tunis. Ann Geophys 15:233–244

    Google Scholar 

  • Ambraseys NN (1981) The El Asnam (Algeria) earthquake of 10 October 1980; conclusions drawn from a field study. Q J Eng Geol Hydrogeol 14:143–148

    Google Scholar 

  • Ambraseys NN, Melvilie CP, Adam RD (1994) The seismicity of Egypt, Arabia and the Red Sea a historical review. Cambridge University Press, UK, pp 1–137

    Google Scholar 

  • Arboleya ML, Teixell A, Charroud M, Julivert M (2004) A structural transect through the High and Middle Atlas of Morocco. J Afr Earth Sc 39:319–327

    Google Scholar 

  • Argus DF, Gordon RG, De Mets C, Stein S (1989) Closure of the Africa-Eurasia-North America plate Motions circuit and tectonics of the Gloria fault. J Geophys Res 94:5585–5602

    Google Scholar 

  • Atkinson G, Boore D (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96:2181–2205

    Google Scholar 

  • Atkinson GM, Bommer JJ, Abrahamson NA (2014) Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismol Res Lett 85:1141–1144

    Google Scholar 

  • Badawy A (2005) Present-day seismicity, stress field and crustal deformation of Egypt. J Seismol 9(2):267–276

    Google Scholar 

  • Badawy A, Korrat I, El-Hadidy M, Gaber H (2016) Update earthquake risk assessment in Cairo, Egypt. J Seismol 21(4):571–589

    Google Scholar 

  • Ben Ayed N (1993) Evolution tectonique del’Avant-pays dela chaine alpine de Tunisie du debut du Mésozoique a l’Actuel. Annale des Mines et de la Geologie de Tunisie 32:286

    Google Scholar 

  • Benouar D (1993) The seismicity of Algeria and adjacent regions during the twentieth century. PhD thesis, Civil Engineering Department, Imperial College, University of London, p 712

  • Benouar D (1994) Materials for the investigation of the seismicity of algeria and adjacent regions. Annali Di Geofisica XXXVII (4)

  • Benouar D, Laradi N (1996) A reappraisal of the seismicity of the Maghreb countries—Algeria, Morocco, Tunisia. Nat Hazards 13(3):275–296

    Google Scholar 

  • Benouar D, Molas GL, Yamazaki F (1996) Earthquake hazard mapping in the Maghreb countries—Algeria, Morocco, Tunisia. Earthq Eng Struct Dyn J 25(10):1151–1164

  • Bosworth W, Taviani M (1996) Late Quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: evidence from uplifted coral terraces, mesoscopic fault arrays, and borehole breakouts. Tectonics 15:791–802

    Google Scholar 

  • Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253

    Google Scholar 

  • Bouhadad Y, Laouami N (2002) Earthquake hazard assessment in the western of Algeria. J Nat Hazards 26:227–243

    Google Scholar 

  • BSSC (2003) The 2003 NEHRP recommended provisions for new buildings and other structures. Part 1: provisions (FEMA 450), Building Seismic Safety Council. www.bssconline.org

  • Campbell A (1968) The Barce (Al Marj) earthquake of 1963. In: Geology and archaeology of Northern Cyrenaica, Libya. Petroleum exploration society of Libya 10th annual field conference. Libya: F. T. Barr, pp 183–195

  • CEN (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, British Standard BS EN 1998-1:2004: E, 219

  • Chen Y-S, Weatherill G, Pagani M, Cotton F (2018) A transparent and data-driven global tectonic regionalization model for seismic hazard assessment. Geophys J Int 213(22):1263–1280

    Google Scholar 

  • Cherkaoui T-E, El Hassani A (2012) Seismicity and Seismic hazard in Morocco. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre 34:45–55

    Google Scholar 

  • Chiou BS-J, Youngs RR (2014) Update of the chiou and youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Sp 30:1117–1153

    Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground motion models for specific target regions: application to central Europe and rock sites. J Seismol 10:137–156

    Google Scholar 

  • CRAAG (1994) Centre de Recherche en Astronomie Astrophysique et de Geophysique 1994. Les séismes en Algerie de 1365 à 1992. CRAAG. Report, Algiers

  • Danciu L, Şeşetyan K, Demircioglu M, Gülen L, Zare M, Basili R, Elias A, Adamia S, Tsereteli N, Yalçın H et al (2017) The 2014 earthquake model of the middle east: seismogenic sources. Bull Earthq Eng 16:1–32

    Google Scholar 

  • De Mets CR, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Google Scholar 

  • Di Giacomo D, Bondár I, Storchak D, Engdahl ER, Bormann P, Harris J (2015) ISC-GEM: global instrumental earthquake catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment. Phys Earth Planet Inter 239:33–47

    Google Scholar 

  • Di Giacomo D, Engdahl ER, Storchak DA (2018) The ISC-GEM earthquake catalogue (1904–2014): status after the extension project. Earth Syst Sci Data 10:1877–1899

    Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61:43–104

    Google Scholar 

  • Edwards B, Allmann B, Fäh D et al (2010) Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude. Geophys J Int 183:407–420

    Google Scholar 

  • Ekstrom G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Int 200–201:1–9

    Google Scholar 

  • El-Sayed A, Wahlström R, Kulhánek O (1994) Seismic hazard of Egypt. Nat Hazard 10(3):247–259

    Google Scholar 

  • Ezzelarab M, Shokry MMF, Mohamed AME, Helal AMA, Mohamed AA, El-Hadidy MS (2016) Evaluation of seismic hazard at the northwestern part of Egypt. J Afr Earth Sc 113:114–125

    Google Scholar 

  • Field EH, Jordan TH, Cornell CA (2003) OpenSH—a developing Community-modeling environment for seismic hazard analysis. Seismol Res Lett 74:406–419

    Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett 66(4):8–21

    Google Scholar 

  • Giardini D (ed) (1999) The global seismic hazard assessment program 1992–1999. Annali Geofis 42(6):248

  • Giardini D, Danciu L, Erdik M, Sesetyan K, Demircioglu M, Akkar S, Gülen L, Zare M (2016) Seismic hazard map of the middle east. Bull Earthq Eng. https://doi.org/10.1007/s10518-018-0347-3

    Article  Google Scholar 

  • Gomez F, Barazangi M, Bensaid M (1996) Active tectonism in the intracontinental Middle Atlas Mountains of Morocco: synchronous crustal shortening and extension. J Geol Soc 153:389–402

    Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570

    Google Scholar 

  • Hamdache M, Peláez JA, Talbi A, López Casado C (2010a) A unified catalog of main earthquakes for Northern Algeria from A.D. 856 to 2008. Seismol Res Lett 81:732–739

    Google Scholar 

  • Hamdache M, Peláez JA, Talbi A, Mobarki M (2010b) Evaluation of probabilistic seismic hazard in Northern Algeria. A contribution to the Algerian building code. 5ème Symposium International sur la Construction en Zone Sismique. 26–27 octubre, 2010. Chlef, Argelia

  • Hamdache M, Peláez JA, Talbi A, Mobarki M, López Casado C (2012) Ground motion hazard values for Northern Algeria. Pure Appl Geophys 169:711–723

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(5):2348–2350

    Google Scholar 

  • Hassen A (1983) Seismicity of Libya and related problems. PhD thesis. Department of civil Engineering, Colorado State University, Colorado

  • Hussein HM, Abou Elenean KM, Marzouk IA et al (2013) Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. J Afr Earth Sc 81:1–15

    Google Scholar 

  • IASPEI (2013) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data. http://www.iaspei.org/commissions/commission-on-seismological-observation-and-interpretation/Summary_WG_recommendations_20130327.pdf

  • Jiménez MJ, García-Fernández M and the GSHAP Ibero-Maghreb Working Group (Chadi M, El Foul D, Izquierdo A, Martinez-Solares JM, Sousa-Oliveira C, Tadili BA) (1999) Seismic hazard assessment in the IberoMaghreb Region. Annali Geofis 42:1057–1066

  • Jiménez-Munt I, Fernàndez M, Torne M, Bird P (2001) The transition from linear to diffuse plate boundary in the Azores-Gibraltar region: results from a thin-sheet model. Earth Planet Sci Lett 192:175–189

    Google Scholar 

  • Kagan YY (2005) Double-couple earthquake focal mechanism: random rotation and display. Geophys J Int 163:1065–1072

    Google Scholar 

  • Kariche J, Meghraoui M, Ayadi A, Boughacha M-S (2017) Stress change and fault interaction from a two century-long earthquake sequence in the central tell atlas, AlgeriaStress change and fault interaction from a two century-long earthquake sequence. Bull Seismol Soc Am 107:2624–2635

    Google Scholar 

  • Kaverina AN, Lander AV, Prozorov AG (1996) Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophys J Int 125(1):249–265

    Google Scholar 

  • Kebeasy R (1980) Seismicity and seismotectonics of Libya. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol 3. Academic Press, London, pp 955–963

    Google Scholar 

  • Ksentini A, Romdhane NB (2014) Updated seismic hazard assessment of Tunisia. Bull Earthq Eng 12(2):647–670

    Google Scholar 

  • Lagesse R, Free M, Lubkowski Z (2017) Probabilistic seismic hazard assessment for Libya. In: 16th world conference on earthquake, 16WCEE. Santiago Chile, January 9th–13th

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988

    Google Scholar 

  • Leonard M (2014) Self-consistent earthquake fault-scaling relations: update and extension to stable continental strike-slip faults. Bull Seismol Soc Am 104:1971–1988

    Google Scholar 

  • Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai block: implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238:217–224

    Google Scholar 

  • Maouche S, Meghraoui M, Morhange C et al (2011) Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509:69–80

    Google Scholar 

  • Mauffret A (2007) The Northwestern (Maghreb) boundary of the Nubia (Africa) Plate. Tectonophysics 429:21–44

    Google Scholar 

  • McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland, MNO-10

  • Medina F, Bensaid I, Tangi A (2011) Catalogue of focal mechanisms of moroccan earthquakes for the period 1959–2007: analysis of parameters. Bull l’Inst Sci Rabat Sect Sci Terre 33:37–46

    Google Scholar 

  • Meghraoui M (1988) Géologie des zones sismiques du nord de l’Algérie, Tectonique active, Paléosismologie et synthèse sismotectonique, PhD thesis, Univ. Paris-Sud Orsay, 350 p

  • Meghraoui M, Pondrelli S (2013) Active faulting and transpression tectonics along the plate boundary in North Africa. Ann Geophys. https://doi.org/10.4401/ag-4970

    Article  Google Scholar 

  • Meghraoui M, Cisternas A, Philip H (1986) Seismotectonics of the lower Chéliff basin: structural background of the El Asnam (Algeria) earthquake. Tectonics 5(6):809–836

    Google Scholar 

  • Meghraoui M, Philip H, Albarede F, Cisternas A (1988) Trench investigations through the trace of the 1980 El Asnam thrust fault: evidence for paleoseismicity. Bull Seismol Soc Am 78:979–999

    Google Scholar 

  • Meghraoui M, Outtani F, Choukri A, De Lamotte DF (1999) Coastal tectonics across the South Atlas thrust front and the Agadir active zone, Morocco. Geol Soc 146:239–253

    Google Scholar 

  • Mejri L, Regard V, Carretier S, Brusset S, Dlala M (2010) Evidence of Quaternary active folding near Utique (Northeast Tunisia) from tectonic observations and a seismic profile. CR Geosci 342(11):864–872

    Google Scholar 

  • Mekkawi M, Schnegg P-A, Arafa-Hamed T, Elathy E (2005) Electrical structure of the tectonically active Kalabsha Fault, Aswan, Egypt. Earth Planet Sci Lett 240:764–773

    Google Scholar 

  • Mourabit T, Abou Elenean KM, Ayadi A, Benouar D, Ben Suleman A, Bezzeghoud M, Cheddadi A, Chourak M, ElGabry MN, Harbi A, Hfaiedh M, Hussein HM, Kacem J, Ksentini A, Jabour N, Magrin A, Maouche S, Meghraoui M, Ousadou F, Panza GF, Peresan A, Romdhane N, Vaccari F, Zuccolo E (2014) Neo-deterministic seismic hazard assessment in North Africa. J Seismolog 18(2):301–318

    Google Scholar 

  • Ouyed M, Yielding G, Hatzfeld D, King GCP (1983) An aftershock study of the El Asnam (Algeria) earthquake of 1980 October 10. Geophys J R Astr Soc 73:605–639

    Google Scholar 

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014) OpenQuake-engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702

    Google Scholar 

  • Pagani M, Garcia-Peláez J, Gee R, Johnson KL, Poggi V, Silva V, Simionato M, Styron RH, Viganò D, Danciu L, Monelli D, Weatherill G (2020) The 2018 version of the global earthquake model: hazard component. Earthq Spectra (accepted for publication)

  • Paradise TR (2005) Perception of earthquake risk in Agadir, Morocco: a case study from a Muslim community. Glob Environ Change Part B Environ Hazards 6:167–180

    Google Scholar 

  • Pastor Castilla À, Teixell A, Arboleya ML (2013) Rates of quaternary deformation in the Ouarzazate Basin (Southern Atlas Front, Morocco). Ann Geophys. https://doi.org/10.4401/ag-4940

    Article  Google Scholar 

  • Patriat P, Segoufrin J, Schlich R, Goslin J, Auzende JM, Benzart P, Bonnin J, Olivet JL (1982) Les mouvements relatifs de l’Inde, de l’Afrique et de l’Eurasie. Bull Soc Geol Fr 24(2):363–373

    Google Scholar 

  • Peláez JA, Hamdache M, López Casado C (2003) Seismic hazard in northern Algeria using spatially smoothed seismicity. Tectonophysics 372:105–119

    Google Scholar 

  • Peláez JA, Hamdache M, Casado CL (2006) Seismic Hazard in Term of Spectral Accelerations and Uniform Hazard Spectra in Northern Algeria. Pure appl Geophys 163:119–135

    Google Scholar 

  • Peláez JA, Chourak M, Tadili BA, Aït Brahim L, Hamdache M, López Casado C, Martínez Solares JM (2007) A Catalog of Main Moroccan Earthquakes from 1045 to 2005. Seismol Res Lett 78(6):614–621

    Google Scholar 

  • Peláez J, Henares J, Hamdache M, Sanz de Galdeano C (2018). A seismogenic zone model for seismic hazard studies in Northwestern Africa. https://doi.org/10.1007/978-3-319-77359-9_29

  • Perez ND, Teixell A, Gómez-Gras D, Stockli DF (2019) Reconstructing Extensional Basin Architecture and Provenance in the Marrakech High Atlas of Morocco: implications for Rift Basins and Inversion Tectonics. Tectonics 38:1584–1608

    Google Scholar 

  • Pezeshk S, Zandieh A, Tavakoli B (2011) Hybrid empirical ground-motion prediction equations for eastern North America using NGA models and updated seismological parameters. Bull Seismol Soc Am 101:1859–1870

    Google Scholar 

  • Poggi V, Durrheim R, Mavonga Tuluka G, Weatherill G, Gee R, Pagani M, Nyblade A, Delvaux D (2017) Assessing seismic hazard of the East African Rift: a pilot study from GEM and AfricaArray. Bull Earthq Eng 15(11):4499–4529

    Google Scholar 

  • Poggi V, Edwards B, Fäh D (2018) Development of hazard- and amplification-consistent elastic design spectra. In: Soil dynamics and earthquake engineering, special issue “Seismic ground response and site effects: from theoretical and experimental studies to design codes” 128:1–16

  • Rigby M (2008) Recent faulting and active shortening of the Middle Atlas Mountains, Morocco, within the diffuse African-Eurasian Plate boundary. University of Missouri-Columbia

  • Said R (1981) The geological evolution of the River Nile. Springer, New York, p 151

    Google Scholar 

  • Saïd A, Baby P, Chardon D, Ouali J (2011) Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia. Tectonics 30:TC6004. https://doi.org/10.1029/2011TC002862

  • Sawires R, Peláez J, Fat-Helbary RE, Ibrahim HA, García-Hernández MT (2015) An updated seismic source model for Egypt. In: Earthquake engineering-from engineering seismology to optimal seismic design of engineering structures. InTech. ISBN 978-953

  • Schwartz DP, Coppersmith KJ (1984) Fault behaviour and characteristic earth-quakes: examples from the Wasatch and San Andreas fault zones. J Geophys Res 89(B7):5681–5698

    Google Scholar 

  • Sébrier M, Siame L, Zouine EM et al (2006) Active tectonics in the Moroccan High Atlas. CR Geosci 338:65–79

    Google Scholar 

  • Serpelloni E, Vannucci G, Pondrelli S et al (2007) Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200

    Google Scholar 

  • Sharp IR, Gawthorpe RL, Underhill JR, Gupta S (2000) Fault propagation folding in extensional settings: examples of structural style and syn-rift sedimentary response from the Suez Rift, Egypt. Geol Soc Am Bull 112:1877–1899

    Google Scholar 

  • Soumaya A, Ben Ayed N, Delvaux D, Ghanmi M (2015) Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for central Mediterranean. Tectonics 34:2015TC003895. https://doi.org/10.1002/2015TC003895

  • Storchak DA, Di Giacomo D, Bondár I, Engdahl ER, Harris J, Lee WHK, Villaseñor A, Bormann P (2013) Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009). Seismol Res Lett 84:810–815

    Google Scholar 

  • Storchak DA, Di Giacomo D, Engdahl ER, Harris J, Bondár I, Lee WHK, Bormann P, Villaseñor A (2015) The ISC-GEM global instrumental earthquake catalogue (1900–2009). Introd Phys Earth Planet Int 239:48–63

    Google Scholar 

  • Storchak DA, Harris J, Brown L, Lieser K, Shumba B, Verney R, Di Giacomo D, Korger EI M (2017) Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979. Geosci Lett (2017) 4:32. https://doi.org/10.1186/s40562-017-0098-z

  • Suleiman AS, Albini P, Migliavacca P (2004) A short introduction to historical earthquakes in Libya. Ann Geophys 47(2/3):545–554

    Google Scholar 

  • Vilanova SP, Nemser ES, Besana-Ostman GM, Bezzeghoud M, Borges JF, Da Silveira AB, Cabral J, Carvalho J, Cunha PP, Dias RP, Madeira J, Lopes FC, Oliveira CS, Perea H, García-Mayordomo J, Wong I, Arvidsson R, Fonseca JFBD (2014) Incorporating descriptive metadata into seismic source zone models for seismic-hazard assessment: a case study of the Azores-West Iberian region. Bull Seismol Soc Am 104:1212–1229

    Google Scholar 

  • Vogt J (1993) Further research on the historical seismicity of Tunisia. Terra Nova 5:475–476

    Google Scholar 

  • Weatherill GA, Pagani M, Garcia J (2016) Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale. Geophys J Int 206(3):1652–1676

    Google Scholar 

  • Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964

    Google Scholar 

Download references

Acknowledgements

A special thanks goes also to Stéphane Drouet and the anonymous reviewer for their appreciation to our work and their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Poggi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poggi, V., Garcia-Peláez, J., Styron, R. et al. A probabilistic seismic hazard model for North Africa. Bull Earthquake Eng 18, 2917–2951 (2020). https://doi.org/10.1007/s10518-020-00820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-020-00820-4

Keywords

Navigation