Abstract
This paper focuses on the evaluation of the seismic performance of Cerere, the central sculpture of Bartolomeo Ammannati’s Juno Fountain, currently located in Florence, at the Museum of Bargello. A 3D geometrical model based on a laser scanner survey has been obtained and employed to build the finite element model (FEM) used in the analyses. The seismic response of the sculpture has been checked by performing different dynamic analyses, applying three three-dimensional spectrum-compatible ground motions, and using different computer codes and assumptions. The considered numerical models differ from each other regarding the material behavior (linear and non-linear) and the connection between the statue and its pedestal. The obtained results reveal that this latter assumption affects very much the dynamic response of the system. The role played by the possible assumptions regarding the number of components constituting the seismic input and the amount of friction between the pedestal and the statue are also discussed.
Similar content being viewed by others
References
ADINA (2018) Theory and modeling guide, vol 1: ADINA Solids & Structures. Report ARD 12-8
Agbadian MS, Masri SF, Nigbor RL, Ginell WS (1988) Seismic damage mitigation concepts for art objects in museums. In: Proceedings of IX world conference on earthquake engineering, Tokyo-Kyoto, Japan
ASTM (1985) Standard practice for preparing rock core specimens, determining dimensional, and shape tolerances. D4543-85, 837-840
Baggio S, Berto L, Favaretto T, Saetta A, Vitaliani R (2013) Seismic isolation technique of marble sculptures at the Accademia Gallery in Florence: numerical calibration and simulation modelling. Bull Earthq Eng. https://doi.org/10.1007/s10518-015-9741-2
Bagnéris M, Fabien Cherblanc F, Bromblet P, Pamart A (2017) A complete methodology for the mechanical diagnosis of statue provided by innovative uses of 3D model. Application to the imperial marble statue of Alba-la-Romaine (France). J Cult Herit 28:109–116. https://doi.org/10.1016/j.culher.2017.05.002
Bakhtiary E, Gardoni P (2016) Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks. Eng Struct 114:25–34. https://doi.org/10.1016/j.engstruct.2016.01.050
Berto L, Favaretto T, Saetta A, Antonelli F, Lazzarini L (2012) Assessment of seismic vulnerability of art objects: the “Galleria dei Prigioni” sculptures at the Accademia Gallery in Florence. J Cult Herit 13:7–21. https://doi.org/10.1016/j.culher.2011.06.005
Borri A, Grazini A (2006) Diagnostic analysis of the lesions and stability of Michelangelo’s David. J Cult Herit 7:273–285. https://doi.org/10.1016/j.culher.2006.06.004
Cerri G (2014) From the traces to definition of the monumental space. The case of Bartolomeo Ammannati’s “Fontana di Sala Grande”. In: Proceedings of the CHNT 18, 2013, Wien
Cerri G, Pirazzoli G, Verdiani G, Tanganelli M, Pintucchi B, Viti S (2018a) Seismic assessment of artefacts: the case of Juno’s Fountain of the National Museum of Bargello. In: Proceedings of “The Future of Heritage Science and Technologies” (HERITECH), Florence, 16–18 May
Cerri G, Pirazzoli G, Verdiani G, Tanganelli M, Rotunno T, Viti S (2018b) Role of the new technologies on the artifacts seismic vulnerability. In: Proceedings 22° cultural heritage and new technologies (CHNT), vol 1, Wolfgang Börner/Susanne Uhlirz, Wien, 8–10 November, pp 1–10
Chopra AK (1995) Dynamics of structures, theory and applications to earthquake engineering. Prentice Hall, New York
Circolare n. 617 del 2 febbraio (2009) Istruzioni per l’Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008. Ministero delle Infrastrutture e dei Trasporti (in Italian)
Ciampoli M, Augusti G (2000) Vulnerabilità sismica degli oggetti esibiti nei musei: interventi per la sua riduzione. In: Vulnerabilità dei beni archeologici e degli oggetti esibiti nei musei. A cura di D. Liberatore, CNR-GNDT
Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Sixth eurographics Italian chapter conference, pp 129–136
Coli M, Rubellini P (2013) Geological anamnesis of the Florence area. Z Dt Ges Geowiss (German J Geosci) 164(4):581–589
Coli M, Ripepe M, Lacanna G (2016) Geological setting and seismic hazard for Florence (Italy), a UNESCO Cultural Heritage site. In: Proceedings of the 15th Asian regional conference on soil mechanics and geotechnical engineering (as an issue of Japanese Geotechnical Society Special Publication), Kathmandu, Nepal
Como M (2013) Statics of historic masonry constructions. Springer, Berlin
Dimitrakopoulos EG, DeJong MJ (2012) Revisiting the rocking block: closed-form solutions and similarity laws. Proc R Soc A 468:2294–2318. https://doi.org/10.1098/rspa.2012.0026
Elmenshawi A, Sorour M, Mufti A, Jaeger LNS (2010) Damping mechanisms and damping ratios in vibrating unreinforced stone masonry. Eng Struct 32:3269–3278
Ferretti E (2011) Bartolomeo Ammannati, la Fontana di Sala Grande e le trasformazioni del Salone dei Cinquecento da Cosimo I a Ferdinando. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti, Firenze
Girardi M, Lucchesi M, Padovani C, Pintucchi B, Pasquinelli G, Zani N (2012) Numerical methods for slender masonry structures: a comparative study. In: Topping BHV (eds) Proceedings of the eleventh international conference on computational structures technology - art. n.118. Civil-Comp Press., Dubrovnik, Croatia, 4–7 September 2012. https://doi.org/10.4203/ccp.99.118
Hall JF (2005) Problems encountered from the use (or misuse) of Rayleigh damping. Earthq Eng Struct Dyn 35(5):525–545. https://doi.org/10.1002/eqe.541
Harney FA (2005) Consequences of using Rayleigh damping in inelastic response history analysis. In: Proceedings of “Congreso Chileno de Sismologia e Ingenieria Antisismica”, Paper No. A10-17
Heikamp D (1978) Bartolomeo Ammannati’s marble fountain for the Sala Grande of the PalazzoVecchio in Florence. In: MacDougall JA, Miller M (eds) Fons Sapientiae: Renaissance Garden Fountains. Dumbarton Oaks, Trustees for Harvard University, Washington
Housner GW (1963) The dynamic behavior of water tanks. Bull Seismol Soc Am 53(2):381–387
Luzi L, Pacor F, Puglia R (2019) Italian Accelerometric Archive v3.0. Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale. https://doi.org/10.13127/itaca.3.0
Kounadis AN (2015) New findings in the rocking instability of one and two rigid block systems under ground motion. Meccanica 50:2219–2238. https://doi.org/10.1007/s11012-015-0167-3
Lowry MK, Farrar BJ, Armendariz D, Podany J (2007) Protecting collections in the J. Paul Getty Museum from earthquake damage. WAAC Newslett 29:16–23
Lucchesi M, Pintucchi B (2007) A numerical model for non-linear dynamics analysis of masonry slender structures. Eur J Mech A Solids 26:88–105. https://doi.org/10.1016/j.euromechsol.2006.02.005
Lucchesi M, Pintucchi B, Zani N (2017) Influence of the modelling approach in the dynamic analysis of masonry towers. In: Proceedings of the Conference “ANIDIS XVII”, Pistoia, 17–21 September 2017
Lucchesi M, Pintucchi B, Zani N (2018a) Masonry-like material with bounded shear stress. Eur J Mech A Solids 72:329–340. https://doi.org/10.1016/j.euromechsol.2018.05.001
Lucchesi M, Pintucchi B, Zani N (2018b) Bounded shear stress in masonry-like bodies. Meccanica 53(7):1777–1791. https://doi.org/10.1007/s11012-017-0719-9
McKenzie L, Farrar BJ, Armendariz D, Podany J (2007) Protecting collections in the J. Paul Getty Museum from earthquake damage. In: Proceedings of the international conference on earthquake protection of museums, Istanbul 2007
Monaco M, Guadagnuolo M, Gesualdo A (2014) The role of friction in the seismic risk mitigation of freestanding art objects. Nat Hazards 2014(73):389–402. https://doi.org/10.1007/s11069-014-1076-9
NTC (2018). Aggiornamento delle « Norme tecniche per le costruzioni » . G.U. No. 42 del 20 Febbraio D.M. Ministero Infrastrutture e Trasporti 17 gennaio 2018, Roma (in Italian)
Parisi F, Augenti N (2013) Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng Fail Anal 34:735–760. https://doi.org/10.1016/j.engfailanal.2013.01.005
Pascale G, Lolli A (2015) Crack assessment in marble sculptures using ultrasonic measurements: laboratory tests and application on the statue of David by Michelangelo. J Cult Herit 16(6):813–821. https://doi.org/10.1016/j.culher.2015.02.005
Paulay T, Priestley MJN (1992) Seismic design of reinforced concrete and masonry buildings. Wiley, New York, p 744
Pintucchi B, Zani N (2009) Effects of material and geometric non-linearities on the collapse load of masonry arches. Eur J Mech A Solids. https://doi.org/10.1016/j.euromechsol.2008.02.007
Pintucchi B, Zani N (2014) Effectiveness of nonlinear static procedures for slender masonry towers. Bull Earthq Eng 12:2531–2556. https://doi.org/10.1007/s10518-014-9595-z
Pintucchi B, Rotunno T, Tanganelli M, Viti S (2019) Bartolomeo Ammannati’s Fountain: comparisons between different numerical models. In: Aguilar R, Torrealva D, Moreira S, Pando M, Ramos LF (eds) RILEM bookseries – structural analysis of historical constructions. Springer, Berlin, pp 1201–1209
Pirazzoli G (2011) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Note sull’allestimento della mostra per il V centenario. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti Editore, Firenze
Podany J (2015) An overview of seismic damage mitigation for museums. In: International symposium on advances of protection devices for museums exibits. 13–17 April, Beijing & Shanghai
Rayleigh L (1954) Theory of sound (two volumes), 1954th edn. Dover Publications, New York, p 1877
Smyrou E (2006) Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Dissertation for the MSc in Earthquake Engineering. European School for Advanced Studies in Reduction of Seismic Risk (ROSE SCHOOL). Università degli Studi di Pavia
Sorace S, Terenzi G (2015) Seismic performance assessment and base-isolated floor protection of statues exhibited in museum halls. Bull Earthq Eng 13(6):1873–1892. https://doi.org/10.1007/s10518-014-9680-3
Spyrakos CC, Maniatakis CA, Taflampas IM (2008) Assessment of seismic risk for museum artifacts. In: The 14th world conference on earthquake engineering. 12–17 October 2008, Beijing, China
Spyrakos CC, Maniatakis CA, Taflampas IM (2017) Application of predictive models to assess failure of museum artifacts under seismic loads. J Cult Herit 23:11–21. https://doi.org/10.1016/j.culher.2016.10.001
Ther T, Kollàr LP (2018) Overturning of rigid blocks for earthquake excitation. Bull Earthq Eng 16:1607–1631. https://doi.org/10.1007/s10518-017-0238-z
UNI EN 1926 (2000) Natural stone test methods: determination of uniaxial compressive strength. Ente Nazionale Italiano di Unificazione, Milano
Verdiani G, Fantini F (2012) The Geometry behind the “Fontana di Sala Grande” a case study of reverse modeling. In: 4th International conference on progress in cultural heritage preservation, EuroMed 2012, Limassol, Cyprus
Verdiani G, Pirazzoli G, Cerri G (2012) The Reconstruction of the “Fontana di Sala Grande” and some hypothesis about its original layout, in Act of counsil Virtual Systems and Multimedia (VSMM) Virtual Systems in the Information Society 2012, Milano
Wittich CE, Hutchinson TC (2016) Experimental modal analysis and seismic mitigation of statue-pedestal systems. J Cult Herit 20(2016):641–648. https://doi.org/10.1016/j.culher.2016.02.001
Wittich CE, Hutchinson TC, Wood RL, Seracini M, Kuester F (2016) Characterization of full-scale, human-form, culturally important statues: case study. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000508
Zikos D (2011) Fontana di Sala Grande 1556-1561. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti, Firenze
Acknowledgements
This research belongs to the project “RESIMUS: la valutazione della resilienza e del rischio in un caso di rilevanza internazionale: il Museo del Bargello a Firenze”, supported by “Fondazione Cassa di Risparmio di Firenze”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Viti, S., Pintucchi, B., Rotunno, T. et al. The seismic analysis of Cerere at the Museum of Bargello. Bull Earthquake Eng 18, 2635–2656 (2020). https://doi.org/10.1007/s10518-020-00802-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10518-020-00802-6