Skip to main content

Advertisement

Log in

The seismic analysis of Cerere at the Museum of Bargello

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on the evaluation of the seismic performance of Cerere, the central sculpture of Bartolomeo Ammannati’s Juno Fountain, currently located in Florence, at the Museum of Bargello. A 3D geometrical model based on a laser scanner survey has been obtained and employed to build the finite element model (FEM) used in the analyses. The seismic response of the sculpture has been checked by performing different dynamic analyses, applying three three-dimensional spectrum-compatible ground motions, and using different computer codes and assumptions. The considered numerical models differ from each other regarding the material behavior (linear and non-linear) and the connection between the statue and its pedestal. The obtained results reveal that this latter assumption affects very much the dynamic response of the system. The role played by the possible assumptions regarding the number of components constituting the seismic input and the amount of friction between the pedestal and the statue are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • ADINA (2018) Theory and modeling guide, vol 1: ADINA Solids & Structures. Report ARD 12-8

  • Agbadian MS, Masri SF, Nigbor RL, Ginell WS (1988) Seismic damage mitigation concepts for art objects in museums. In: Proceedings of IX world conference on earthquake engineering, Tokyo-Kyoto, Japan

  • ASTM (1985) Standard practice for preparing rock core specimens, determining dimensional, and shape tolerances. D4543-85, 837-840

  • Baggio S, Berto L, Favaretto T, Saetta A, Vitaliani R (2013) Seismic isolation technique of marble sculptures at the Accademia Gallery in Florence: numerical calibration and simulation modelling. Bull Earthq Eng. https://doi.org/10.1007/s10518-015-9741-2

    Article  Google Scholar 

  • Bagnéris M, Fabien Cherblanc F, Bromblet P, Pamart A (2017) A complete methodology for the mechanical diagnosis of statue provided by innovative uses of 3D model. Application to the imperial marble statue of Alba-la-Romaine (France). J Cult Herit 28:109–116. https://doi.org/10.1016/j.culher.2017.05.002

    Article  Google Scholar 

  • Bakhtiary E, Gardoni P (2016) Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks. Eng Struct 114:25–34. https://doi.org/10.1016/j.engstruct.2016.01.050

    Article  Google Scholar 

  • Berto L, Favaretto T, Saetta A, Antonelli F, Lazzarini L (2012) Assessment of seismic vulnerability of art objects: the “Galleria dei Prigioni” sculptures at the Accademia Gallery in Florence. J Cult Herit 13:7–21. https://doi.org/10.1016/j.culher.2011.06.005

    Article  Google Scholar 

  • Borri A, Grazini A (2006) Diagnostic analysis of the lesions and stability of Michelangelo’s David. J Cult Herit 7:273–285. https://doi.org/10.1016/j.culher.2006.06.004

    Article  Google Scholar 

  • Cerri G (2014) From the traces to definition of the monumental space. The case of Bartolomeo Ammannati’s “Fontana di Sala Grande”. In: Proceedings of the CHNT 18, 2013, Wien

  • Cerri G, Pirazzoli G, Verdiani G, Tanganelli M, Pintucchi B, Viti S (2018a) Seismic assessment of artefacts: the case of Juno’s Fountain of the National Museum of Bargello. In: Proceedings of “The Future of Heritage Science and Technologies” (HERITECH), Florence, 16–18 May

  • Cerri G, Pirazzoli G, Verdiani G, Tanganelli M, Rotunno T, Viti S (2018b) Role of the new technologies on the artifacts seismic vulnerability. In: Proceedings 22° cultural heritage and new technologies (CHNT), vol 1, Wolfgang Börner/Susanne Uhlirz, Wien, 8–10 November, pp 1–10

  • Chopra AK (1995) Dynamics of structures, theory and applications to earthquake engineering. Prentice Hall, New York

    Google Scholar 

  • Circolare n. 617 del 2 febbraio (2009) Istruzioni per l’Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008. Ministero delle Infrastrutture e dei Trasporti (in Italian)

  • Ciampoli M, Augusti G (2000) Vulnerabilità sismica degli oggetti esibiti nei musei: interventi per la sua riduzione. In: Vulnerabilità dei beni archeologici e degli oggetti esibiti nei musei. A cura di D. Liberatore, CNR-GNDT

  • Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Sixth eurographics Italian chapter conference, pp 129–136

  • Coli M, Rubellini P (2013) Geological anamnesis of the Florence area. Z Dt Ges Geowiss (German J Geosci) 164(4):581–589

    Google Scholar 

  • Coli M, Ripepe M, Lacanna G (2016) Geological setting and seismic hazard for Florence (Italy), a UNESCO Cultural Heritage site. In: Proceedings of the 15th Asian regional conference on soil mechanics and geotechnical engineering (as an issue of Japanese Geotechnical Society Special Publication), Kathmandu, Nepal

  • Como M (2013) Statics of historic masonry constructions. Springer, Berlin

    Book  Google Scholar 

  • Dimitrakopoulos EG, DeJong MJ (2012) Revisiting the rocking block: closed-form solutions and similarity laws. Proc R Soc A 468:2294–2318. https://doi.org/10.1098/rspa.2012.0026

    Article  Google Scholar 

  • Elmenshawi A, Sorour M, Mufti A, Jaeger LNS (2010) Damping mechanisms and damping ratios in vibrating unreinforced stone masonry. Eng Struct 32:3269–3278

    Article  Google Scholar 

  • Ferretti E (2011) Bartolomeo Ammannati, la Fontana di Sala Grande e le trasformazioni del Salone dei Cinquecento da Cosimo I a Ferdinando. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti, Firenze

  • Girardi M, Lucchesi M, Padovani C, Pintucchi B, Pasquinelli G, Zani N (2012) Numerical methods for slender masonry structures: a comparative study. In: Topping BHV (eds) Proceedings of the eleventh international conference on computational structures technology - art. n.118. Civil-Comp Press., Dubrovnik, Croatia, 4–7 September 2012. https://doi.org/10.4203/ccp.99.118

  • Hall JF (2005) Problems encountered from the use (or misuse) of Rayleigh damping. Earthq Eng Struct Dyn 35(5):525–545. https://doi.org/10.1002/eqe.541

    Article  Google Scholar 

  • Harney FA (2005) Consequences of using Rayleigh damping in inelastic response history analysis. In: Proceedings of “Congreso Chileno de Sismologia e Ingenieria Antisismica”, Paper No. A10-17

  • Heikamp D (1978) Bartolomeo Ammannati’s marble fountain for the Sala Grande of the PalazzoVecchio in Florence. In: MacDougall JA, Miller M (eds) Fons Sapientiae: Renaissance Garden Fountains. Dumbarton Oaks, Trustees for Harvard University, Washington

    Google Scholar 

  • Housner GW (1963) The dynamic behavior of water tanks. Bull Seismol Soc Am 53(2):381–387

    Google Scholar 

  • Luzi L, Pacor F, Puglia R (2019) Italian Accelerometric Archive v3.0. Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale. https://doi.org/10.13127/itaca.3.0

  • Kounadis AN (2015) New findings in the rocking instability of one and two rigid block systems under ground motion. Meccanica 50:2219–2238. https://doi.org/10.1007/s11012-015-0167-3

    Article  Google Scholar 

  • Lowry MK, Farrar BJ, Armendariz D, Podany J (2007) Protecting collections in the J. Paul Getty Museum from earthquake damage. WAAC Newslett 29:16–23

    Google Scholar 

  • Lucchesi M, Pintucchi B (2007) A numerical model for non-linear dynamics analysis of masonry slender structures. Eur J Mech A Solids 26:88–105. https://doi.org/10.1016/j.euromechsol.2006.02.005

    Article  Google Scholar 

  • Lucchesi M, Pintucchi B, Zani N (2017) Influence of the modelling approach in the dynamic analysis of masonry towers. In: Proceedings of the Conference “ANIDIS XVII”, Pistoia, 17–21 September 2017

  • Lucchesi M, Pintucchi B, Zani N (2018a) Masonry-like material with bounded shear stress. Eur J Mech A Solids 72:329–340. https://doi.org/10.1016/j.euromechsol.2018.05.001

    Article  Google Scholar 

  • Lucchesi M, Pintucchi B, Zani N (2018b) Bounded shear stress in masonry-like bodies. Meccanica 53(7):1777–1791. https://doi.org/10.1007/s11012-017-0719-9

    Article  Google Scholar 

  • McKenzie L, Farrar BJ, Armendariz D, Podany J (2007) Protecting collections in the J. Paul Getty Museum from earthquake damage. In: Proceedings of the international conference on earthquake protection of museums, Istanbul 2007

  • Monaco M, Guadagnuolo M, Gesualdo A (2014) The role of friction in the seismic risk mitigation of freestanding art objects. Nat Hazards 2014(73):389–402. https://doi.org/10.1007/s11069-014-1076-9

    Article  Google Scholar 

  • NTC (2018). Aggiornamento delle « Norme tecniche per le costruzioni » . G.U. No. 42 del 20 Febbraio D.M. Ministero Infrastrutture e Trasporti 17 gennaio 2018, Roma (in Italian)

  • Parisi F, Augenti N (2013) Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng Fail Anal 34:735–760. https://doi.org/10.1016/j.engfailanal.2013.01.005

    Article  Google Scholar 

  • Pascale G, Lolli A (2015) Crack assessment in marble sculptures using ultrasonic measurements: laboratory tests and application on the statue of David by Michelangelo. J Cult Herit 16(6):813–821. https://doi.org/10.1016/j.culher.2015.02.005

    Article  Google Scholar 

  • Paulay T, Priestley MJN (1992) Seismic design of reinforced concrete and masonry buildings. Wiley, New York, p 744

    Book  Google Scholar 

  • Pintucchi B, Zani N (2009) Effects of material and geometric non-linearities on the collapse load of masonry arches. Eur J Mech A Solids. https://doi.org/10.1016/j.euromechsol.2008.02.007

    Article  Google Scholar 

  • Pintucchi B, Zani N (2014) Effectiveness of nonlinear static procedures for slender masonry towers. Bull Earthq Eng 12:2531–2556. https://doi.org/10.1007/s10518-014-9595-z

    Article  Google Scholar 

  • Pintucchi B, Rotunno T, Tanganelli M, Viti S (2019) Bartolomeo Ammannati’s Fountain: comparisons between different numerical models. In: Aguilar R, Torrealva D, Moreira S, Pando M, Ramos LF (eds) RILEM bookseries – structural analysis of historical constructions. Springer, Berlin, pp 1201–1209

    Chapter  Google Scholar 

  • Pirazzoli G (2011) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Note sull’allestimento della mostra per il V centenario. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti Editore, Firenze

  • Podany J (2015) An overview of seismic damage mitigation for museums. In: International symposium on advances of protection devices for museums exibits. 13–17 April, Beijing & Shanghai

  • Rayleigh L (1954) Theory of sound (two volumes), 1954th edn. Dover Publications, New York, p 1877

    Google Scholar 

  • Smyrou E (2006) Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Dissertation for the MSc in Earthquake Engineering. European School for Advanced Studies in Reduction of Seismic Risk (ROSE SCHOOL). Università degli Studi di Pavia

  • Sorace S, Terenzi G (2015) Seismic performance assessment and base-isolated floor protection of statues exhibited in museum halls. Bull Earthq Eng 13(6):1873–1892. https://doi.org/10.1007/s10518-014-9680-3

    Article  Google Scholar 

  • Spyrakos CC, Maniatakis CA, Taflampas IM (2008) Assessment of seismic risk for museum artifacts. In: The 14th world conference on earthquake engineering. 12–17 October 2008, Beijing, China

  • Spyrakos CC, Maniatakis CA, Taflampas IM (2017) Application of predictive models to assess failure of museum artifacts under seismic loads. J Cult Herit 23:11–21. https://doi.org/10.1016/j.culher.2016.10.001

    Article  Google Scholar 

  • Ther T, Kollàr LP (2018) Overturning of rigid blocks for earthquake excitation. Bull Earthq Eng 16:1607–1631. https://doi.org/10.1007/s10518-017-0238-z

    Article  Google Scholar 

  • UNI EN 1926 (2000) Natural stone test methods: determination of uniaxial compressive strength. Ente Nazionale Italiano di Unificazione, Milano

    Google Scholar 

  • Verdiani G, Fantini F (2012) The Geometry behind the “Fontana di Sala Grande” a case study of reverse modeling. In: 4th International conference on progress in cultural heritage preservation, EuroMed 2012, Limassol, Cyprus

  • Verdiani G, Pirazzoli G, Cerri G (2012) The Reconstruction of the “Fontana di Sala Grande” and some hypothesis about its original layout, in Act of counsil Virtual Systems and Multimedia (VSMM) Virtual Systems in the Information Society 2012, Milano

  • Wittich CE, Hutchinson TC (2016) Experimental modal analysis and seismic mitigation of statue-pedestal systems. J Cult Herit 20(2016):641–648. https://doi.org/10.1016/j.culher.2016.02.001

    Article  Google Scholar 

  • Wittich CE, Hutchinson TC, Wood RL, Seracini M, Kuester F (2016) Characterization of full-scale, human-form, culturally important statues: case study. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000508

    Article  Google Scholar 

  • Zikos D (2011) Fontana di Sala Grande 1556-1561. In: Paolozzi Strozzi and Zikos (eds) L’acqua, la Pietra, il fuoco. Bartolomeo Ammannati Scultore. Giunti, Firenze

Download references

Acknowledgements

This research belongs to the project “RESIMUS: la valutazione della resilienza e del rischio in un caso di rilevanza internazionale: il Museo del Bargello a Firenze”, supported by “Fondazione Cassa di Risparmio di Firenze”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Viti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viti, S., Pintucchi, B., Rotunno, T. et al. The seismic analysis of Cerere at the Museum of Bargello. Bull Earthquake Eng 18, 2635–2656 (2020). https://doi.org/10.1007/s10518-020-00802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-020-00802-6

Keywords

Navigation