Bulletin of Earthquake Engineering

, Volume 17, Issue 9, pp 4711–4741 | Cite as

A multi-level study for the seismic microzonation of the Western area of Naples (Italy)

  • Valeria Licata
  • Giovanni ForteEmail author
  • Anna d’Onofrio
  • Antonio Santo
  • Francesco Silvestri
Original Research


This paper shows the results of a multidisciplinary research aimed at defining the seismic microzonation of the district Bagnoli–Fuorigrotta in the Western part of Naples metropolitan area, which is subjected to a significant urban requalification project. The area is located in a complex geological setting within an active volcanic field and seismic hazard is characterized by both tectonic and volcanic seismicity, which frequently affected the urban setting. Following the recommendations of National and International Guidelines, the microzonation of the area was carried out adopting a multi-level approach. The maps obtained by applying Grade I and II approaches were the starting points for the numerical prediction of the site response carried out within the Grade III approach. The results of linear and non-linear dynamic analyses were synthesized in terms of amplification factors of peak ground acceleration at surface, PGA, and Housner Intensity, this latter computed through two different period ranges, i.e. 0.1–0.5 s and 0.7–2 s. The above factors were finally mapped adopting a rational approach to extend the local values of the surface amplification to broader areas. The results of the dynamic analyses highlighted that the seismic response of the whole area is highly affected by soil non-linearity and that the amplification of the ground motion mainly depends on the depth of the seismic bedrock, rather than on the local variability of shallow soil layering.


Seismic microzonation Soil characterization Seismic response analyses Pyroclastic soils Phlegraean fields 



The present study has been carried out in the framework of the METROPOLIS Research Project ( The authors are grateful to the Project Coordinator, prof. Gerardo Verderame, to Prof. Fatemeh Jalayer and to TecnoIn SpA for providing some of the data reported in this paper, as well as to the anonymous Reviewers for the useful suggestions addressed to improve the manuscript quality. The paper is dedicated to the memory of late Prof. Filippo Vinale and to his teachings.


  1. AFPS (Association française du génie parasismique) (1995) Guide méthodologique pour la réalisation d’études de microzonage sismique. Secrétariat AFPSGoogle Scholar
  2. Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, Wooddell KE, Graves RW, Kottke AR, Boore DM, Kishida T, Donahue JL (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005CrossRefGoogle Scholar
  3. Ansal A, Tonuk G (2007) Source and site factors in microzonation. In: Pitilakis K (ed) Proceedings of 4th international conference on earthquake geotechnical engineering. Springer, pp 73–92Google Scholar
  4. Ansal A, Kurtuluş A, Tönük G (2010) Seismic microzonation and earthquake damage scenarios for urban areas. Soil Dyn Earthq Eng 30(11):1319–1328CrossRefGoogle Scholar
  5. ASTM D7400–08 (2008) Standard test methods for downhole seismic testing. ASTM International, West ConshohockenGoogle Scholar
  6. Athanasopoulos GA, Pelekis PC, Leonidou EA (1999) Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthq Eng 18(2):135–149CrossRefGoogle Scholar
  7. Bard P, Bouchon M (1980) The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bull Seismol Soc Am 70(4):1263–1286Google Scholar
  8. Borcherdt RD, Gibbs JF (1976) Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bull Seismol Soc Am 66:467–500Google Scholar
  9. Bouckovalas GD, Papadimitriou AG, Karamitros D (2006) Compatibility of EC-8 ground types and site effects with 1-D wave propagation theory. In: Proceedings of ISSMGE ETC-12 workshop. NTUA Athens, Greece, pp 53–67Google Scholar
  10. Calderoni G, Russo F (1998) The geomorphological evolution of the outskirts of Naples during the Holocene: a case study of the Bagnoli-Fuorigrotta depression. The Holocene 8(5):581–588CrossRefGoogle Scholar
  11. d’Onofrio A, Silvestri F, Vinale F (1999) Strain rate dependent behavior of a natural stiff clay. Soils Found 39(2):69–82CrossRefGoogle Scholar
  12. de Silva F, Ceroni F, Sica S, Pecce M.R, Silvestri F (2015) Effects of soil-foundation-structure interaction on the seismic behaviour of monumental towers: the case study of the Carmine Bell Tower in Naples. Rivista Italiana di Geotecnica, numero speciale “Il ruolo della geotecnica nella salvaguardia dei monumenti e dei siti storici”. Luglio - Settembre 2015, 3:3–27Google Scholar
  13. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Miner Petrol 73:47–65CrossRefGoogle Scholar
  14. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170CrossRefGoogle Scholar
  15. Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geoth Res 91:221–246CrossRefGoogle Scholar
  16. Ebrahimian H, Jalayer F, Forte G, Convertito V, Licata V, d’Onofrio A, Santo A, Silvestri F, Manfredi G (2019a) Site-specific probabilistic seismic hazard analysis for the Western area of Naples, Italy. In: A paper submitted to bulletin of earthquake engineeringGoogle Scholar
  17. Ebrahimian H, Jalayer F, Forte G, Convertito V, Licata V, d’Onofrio A, Santo A, Silvestri F (2019b) Probabilistic seismic hazard analysis for tectonic earthquakes in the western area of Naples (Italy). In: Silvestri F, Moraci N (eds) Proceedings of 7th international conference on earthquake geotechnical engineering, Rome, IT, 17–20 June 2019. CRC Press, 2019 Taylor and Francis Group, London, pp 2208–2216Google Scholar
  18. Fabozzi S, Licata V, Autuori S, Bilotta E, Russo G, Silvestri F (2017) Prediction of the seismic behavior of an underground railway station and a tunnel in Naples (Italy). Undergr Space 2(2):88–105CrossRefGoogle Scholar
  19. Fäh D, Ruttner E, Noack T, Kruspan P (1997) Microzonation of the city of Basel. J Seismolog 1:87–102CrossRefGoogle Scholar
  20. Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70:1189–1219CrossRefGoogle Scholar
  21. Fedele L, Insinga DD, Calvert AT, Morra V, Perrotta A, Scarpati C (2011) 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol 73(9):1323–1336CrossRefGoogle Scholar
  22. Forte G, Fabbrocino S, Fabbrocino G, Lanzano G, Santucci de Magistris F, Silvestri F (2017) A geolithological approach to seismic site classification: an application to the Molise Region (Italy). Bull Earthq Eng 15(1):175–198CrossRefGoogle Scholar
  23. Forte G, Chioccarelli E, De Falco M, Cito P, Santo A, Iervolino I (2019) Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dyn Earthq Eng 122:79–93CrossRefGoogle Scholar
  24. Hough SE, Altidor JR, Anglade D, Given D, Janvier MG, Maharrey JZ, Meremonte M, Mildor BS, Prepetit C, Yong A (2010) Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake. Nat Geosci 3:778–782CrossRefGoogle Scholar
  25. Iovine RS, Fedele L, Mazzeo FC, Arienzo I, Cavallo A, Wörner G, Orsi G, Civetta L, D’Antonio M (2017) Timescales of magmatic processes prior to the ~ 4.7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts. Bull Volcanol 79(2):18CrossRefGoogle Scholar
  26. ISSMGE (1999) Manual for zonation on seismic geotechnical hazards. In: Technical committee for earthquake geotechnical engineering, TC4, international society for soil mechanics and geotechnical engineering. The Japanese Geotechnical Society, TokyoGoogle Scholar
  27. ITASCA (2005) FLAC fast lagrangian analysis of continua v. 5.0., User’s manual, Itasca Consulting Group, Minneapolis, Minn. 2005Google Scholar
  28. Kaklamanos J, Bradley BA, Thompson EM, Baise LG (2013) Critical parameters affecting bias and variability in site-response analyses using KiK-net downhole array data. Bull Seismol Soc Am 103(3):1733–1749. CrossRefGoogle Scholar
  29. Lanzo G, Silvestri F, Costanzo A, d’Onofrio A, Martelli L, Pagliaroli A, Sica S, Simonelli A (2011) Site response studies and seismic microzoning in the Middle Aterno valley (L’aquila, Central Italy). Bull Earthquake Eng 9:1417–1442CrossRefGoogle Scholar
  30. Licata V (2015) A laboratory and field study on cyclic liquefaction of a pyroclastic soil. Ph.D. Thesis, Università degli Studi di Napoli Federico II, XXVII cycle.
  31. Licata V, d’Onofrio A, Silvestri F, Olivares L, Bandini V (2015) A laboratory investigation on the cyclic liquefaction resistance of pyroclastic soils. In: Rotonda T, Cecconi M, Silvestri F, Tommasi P (eds) Proceedings of the workshop on volcanic rock and soils. CRC Press, Ischia, pp 241–248Google Scholar
  32. Licata V, Forte G, d’Onofrio A, Evangelista L, Jalayer J, Santo A, Silvestri F (2016) Microzonation study on the Western area of Napoli. Procedia Eng 158:511–516CrossRefGoogle Scholar
  33. Licata V, d’Onofrio A, Silvestri F (2017) Micro-structural factors affecting the static and the cyclic resistance of a pyroclastic silty sand. Géotechnique 68(5):434–441CrossRefGoogle Scholar
  34. Licata V, Forte G, Ebrahimian H, d’Onofrio A, Jalayer J, Santo A, Silvestri F (2019) Evaluation of the seismic ground amplification considering the variability of the bedrock depth and random shear wave velocity profiles. In: Silvestri F, Moraci N (eds) Proceedings of 7th international conference on earthquake geotechnical engineering, Rome, IT, 17–20 June 2019. CRC Press, 2019 Taylor and Francis Group, London, pp 3601–3608Google Scholar
  35. Lysmer J, Kuhlemeyer L (1969) Finite dynamic model for infinite media. J Eng Mech Div 95(EM4):859–877Google Scholar
  36. Madiai C, Simoni G (2013) Analyses of the basin geometry effects across the Aterno valley in Petogna (AQ)—Italy. Rivista Italiana di Geotecnica 4:24–37Google Scholar
  37. Marcellini A, Pagani M (2004) Seismic zonation methodologies with particular reference to the Italian situation. Recent advances in earthquake geotechnical engineering and microzonation. Geotech Geol Earthq Eng 1:231–252Google Scholar
  38. McGill R, Tukey J, Larsen W (1978) Variation of boxplots. Am Stat 32:12–16Google Scholar
  39. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450:85–108CrossRefGoogle Scholar
  40. MS Working Group (2008) Indirizzi e criteri per la microzonazione sismica. Conferenza delle Regioni e delle Province autonome-Dipartimento della protezione civile, Roma. vol. 3 and Cd-rom (in Italian)Google Scholar
  41. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530CrossRefGoogle Scholar
  42. Pagliaroli A (2018) Key issuesin seismic microzonation studies: lessons from recent experiences in Italy. Rivista Italiana di Geotecnica 52(1):5–48Google Scholar
  43. Papa V, Silvestri F, Vinale F (1988) Analisi delle proprietà di un tipico terreno piroclastico mediante prove dinamiche di taglio semplice. I Convegno del GNCSIG. Monselice (PD) 1:265–286 (in Italian) Google Scholar
  44. Picarelli L, Evangelista A, Rolandi G, Paone A, Nicotera MV, Olivares L, Scotto di Santolo A, Lampitiello S, Rolandi M (2007) Mechanical properties of pyroclastic soils in Campania Region. In: Tan T, Phiin KK, Hight DW, Leroueil S (eds) Characterisation and engineering properties of natural soilsGoogle Scholar
  45. Pitilakis K (2004) Site effects. In: Ansal A (ed) Recent advances in earthquake geotechnical engineering and microzonation. Geotechnical, geological, and earthquake engineering, vol 1. Springer, DordrechtGoogle Scholar
  46. Raptakis D, Makra K, Anastasiadis A, Pitilakis K (2004) Complex site effects in Thessaloniki (Greece): II. 2D SH modelling and engineering insights. Bull Earthq Eng 2:301–327CrossRefGoogle Scholar
  47. Rathje, EM, Kottke AR (2013) Strata. Accessed 14 June 2019
  48. Sacchi M, Pepe F, Corradino M, Insinga DD, Molisso F, Lubritto C (2014) The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: Stratal architecture and kinematic reconstruction during the last 15 ky. Mar Geol 354:15–33CrossRefGoogle Scholar
  49. Santucci de Magistris F, d’Onofrio A, Penna A, Puglia R, Silvestri F (2014) Lessons learned from two case-histories of seismic microzonation in Italy. Nat Hazards 74(3):2005–2035CrossRefGoogle Scholar
  50. Senetakis K, Anastasiadis A, Pitilakis K (2012) The small-strain shear modulus and damping ratio of quartz and volcanic sands. Geotech Test J 35:6 (ISSN: 1945–7545) CrossRefGoogle Scholar
  51. Silvestri F, d’Onofrio A (2014) Risposta simica e stabilità di centri abitati e infrastrutture. XXV Convegno AGI – La Geotecnica nella difesa del suolo – Relazione Generale (in Italian)Google Scholar
  52. Vinale F (1988a) Caratterizzazione del sottosuolo di un’area campione di Napoli ai fini di una microzonazione sismica. Rivista Italiana di Geotecnica 2:77–100Google Scholar
  53. Vinale F (1988b) Microzonazione sismica di un’area campione di Napoli. Rivista Italiana di Geotecnica 3:141–162Google Scholar
  54. Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes. Int J Earth Sci 103:801–819CrossRefGoogle Scholar
  55. Wehling TM, Boulanger RW, Arulnathan R, Harder LF Jr, Driller MW (2003) Nonlinear dynamic properties of a fibrous organic soil. J Geotech Geoenviron Eng 12910:929–939CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Anas S.p.ARomeItaly
  2. 2.DICEA, Dipartimento di Ingegneria Civile, Edile ed AmbientaleUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations