Skip to main content
Log in

Seismic collapse assessment of deteriorating RC bridges under multiple hazards during their life-cycle

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Bridges serve essential roles in a state economy whose collapse leads to grave consequences with serious economic losses. Seismic loads and corrosive conditions cause their deterioration over time. In this paper, a comprehensive framework is developed using probabilistic fragility analysis and life-cycle assessment for the collapse assessment of deteriorating bridges under multi-hazard conditions including carbonation, corrosion, scour, and seismic loads. The proposed approach takes into account the combined effects of pier scour, corrosion, and carbonation on the seismic vulnerability of reinforced concrete bridge during its life-cycle for design and retrofit purposes. To achieve this goal, the collapse probability of the bridge due to such hazards is determined for a range of possible hazard intensities. Also, to make an engineering decision regarding different scenarios, the results of the life-cycle assessment are scored. Afterward, based on the cost of each scenario, a cost–benefit analysis is conducted. Finally, the proposed approach is represented using a river-crossing bridge as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • AASHTO (2013) AASHTO guide specifications for LRFD seismic bridge design. American Association of State Highway Transportation Officials, Washington, DC

    Google Scholar 

  • Akiyama M, Frangopol DM, Matsuzaki H (2011) Life-cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthq Eng Struct Dyn 40(15):1671–1687

    Article  Google Scholar 

  • Alipour A, Shafei B, Shinozuka M (2013) Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake. J Bridge Eng 18(5):362–371

    Article  Google Scholar 

  • ASCE/SEI7-16 (2016) Minimum design loads for buildings and other structures. USA

  • ASCE41-17 (2017) Seismic evaluation and retrofit of existing buildings. USA

  • ATC A (1996) 40, Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, report ATC-40. Redwood City

  • Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31(1):579–599

    Article  Google Scholar 

  • Banerjee S, Shinozuka M (2007) Nonlinear static procedure for seismic vulnerability assessment of bridges. Comput. Aided Civ Infrastruct Eng 22(4):293–305

    Article  Google Scholar 

  • Bazaez R, Dusicka P (2017) Performance assessment of multi-column RC bridge bents seismically retrofitted with buckling-restrained braces. Bull Earthq Eng 16(5):2135–2160

    Article  Google Scholar 

  • Billah AH, Muntasir MD (2011) Seismic performance evaluation of multi column bridge bent retrofitted with different alternatives. Doctoral dissertation, University of British Columbia

  • Biondini F, Camnasio E, Palermo A (2014) Lifetime seismic performance of concrete bridges exposed to corrosion. Struct Infrastruct Eng 10(7):880–900

    Article  Google Scholar 

  • Bret DJ (2014) Relationship between the collapse fragility and collapse risk in existing buildings in regions of high and moderate seismicity. Doctoral dissertation, University of Colorado at Boulder

  • Buckle IG, Friedland I, Mander J, Martin G, Nutt R, Power M (2006) Seismic retrofitting manual for highway structures: part 1—bridges, MCEER-06-SP10, MCEER, Buffalo, NY

  • Chang SY, Li YF, Loh CH (2004) Experimental study of seismic behaviors of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns. J Bridge Eng 9(4):391–402

    Article  Google Scholar 

  • Choe DE, Gardoni P, Rosowsky D, Haukaas T (2008) Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliab Eng Syst Saf 93(3):383–393

    Article  Google Scholar 

  • Chopra AK, Chintanapakdee C (2003) Inelastic deformation ratios for design and evaluation of structures: single-degree-of-freedom bilinear systems. Earthquake Engineering Research Center University of California, Berkeley, UCB/EERC 2003-09

  • Computers & Structures Inc. (2017) CSI analysis reference manual for SAP2000, ETABS, and SAFETM. http://www.csiamerica.com

  • Cornell CA, Jalayer F, Hamburger RO, Foutch DA (2002) Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. J Struct Eng 128(4):526–533

    Article  Google Scholar 

  • Cui F, Zhang H, Ghosn M, Xu Y (2018) Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion. Eng Struct 155:61–72

    Article  Google Scholar 

  • Decò A, Frangopol DM (2013) Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards. Earthq Spectra 29(1):127–153

    Article  Google Scholar 

  • Dong Y, Frangopol DM, Saydam D (2013) Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthq Eng Struct Dyn 42(10):1451–1467

    Article  Google Scholar 

  • Duan P, Yan C, Zhou W (2018) Effects of calcined layered double hydroxides on carbonation of concrete containing fly ash. Constr Build Mater 160:725–732

    Article  Google Scholar 

  • Ellingwood BR (2005) Risk-informed condition assessment of civil infrastructure: state of practice and research issues. Struct Infrastruct Eng 1(1):7–18

    Article  Google Scholar 

  • Enright MP, Frangopol DM (1998) Service-life prediction of deteriorating concrete bridges. J Struct Eng 124(3):309–317

    Article  Google Scholar 

  • Fahmy MF, Wu Z, Wu G (2010) Post-earthquake recoverability of existing RC bridge piers retrofitted with FRP composites. Constr Build Mater 24(6):980–998

    Article  Google Scholar 

  • Federal Highway Administration (FHWA) (2012) Evaluating scour at bridges. Hydraulic engineering circular, No. 18 (HEC-18), 4th edn. Washington, DC

  • Ghosh J, Padgett JE (2010) Aging considerations in the development of time-dependent seismic fragility curves. J Struct Eng 136(12):1497–1511

    Article  Google Scholar 

  • Ghosn M, Moses F, Wang J (2003) Design of highway bridges for extreme events, vol 489. Transportation Research Board

  • Guo X, Chen Z (2016) Life-cycle multihazard framework for assessing flood scour and earthquake effects on bridge failure. ASCE-ASME J Risk Uncertain Eng Syst Part A: Civ Eng 2(2):C4015004

    Article  Google Scholar 

  • Haroun MA, Elsanadedy HM (2005) Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. J Bridge Eng 10:749–757

    Article  Google Scholar 

  • Hung CC, Yau WG (2017) Vulnerability evaluation of scoured bridges under floods. Eng Struct 132:288–299

    Article  Google Scholar 

  • Iacobucci RD, Sheikh SA, Bayrak O (2003) Retrofit of square concrete columns with carbon fiber-reinforced polymer for seismic resistance. ACI Struct J 100(6):785–794

    Google Scholar 

  • Jiang C, Huang QH, Gu XL, Zhang WP (2018) Modeling the effects of fatigue damage on concrete carbonation. Constr Build Mater 191:942–962

    Article  Google Scholar 

  • Jin M, Gao S, Jiang L, Chu H, Lu M, Zhi FF (2018) Degradation of concrete with addition of mineral admixture due to free chloride ion penetration under the effect of carbonation. Corros Sci 138:42–53

    Article  Google Scholar 

  • Johnson PA (1995) Comparison of pier-scour equations using field data. J Hydraul Eng 121(8):626–629

    Article  Google Scholar 

  • Johnson PA (1996) Uncertainty of hydraulic parameters. J Hydraul Eng 122(2):112–114

    Article  Google Scholar 

  • Johnson PA, Dock DA (1998) Probabilistic bridge scour estimates. J Hydraul Eng 124(7):750–754

    Article  Google Scholar 

  • Kawashima K, Hosotani M, Yoneda K (2000) Carbon fiber sheet retrofit of reinforced concrete bridge piers. In: Proceedings of international workshop on annual commemoration of Chi-Chi earthquake, vol II—Technical Asp National Center for Research on Earthquake Engineering. Taipei, pp 124–35

  • Kumar R, Gardoni P (2013) Stochastic modeling of deterioration in buildings and civil infrastructure. In: Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing, Cambridge, pp. 410–434

  • Kumar R, Gardoni P, Sanchez-Silva M (2009) Effect of cumulative seismic damage and corrosion on the life cycle cost of reinforced concrete bridges. Earthq Eng Struct Dyn 38:887–905

    Article  Google Scholar 

  • Kyriakides NC, Chrysostomou CZ, Tantele EA, Votsis RA (2015) Framework for the derivation of analytical fragility curves and life cycle cost analysis for non-seismically designed buildings. Soil Dyn Earthq Eng 78:116–126

    Article  Google Scholar 

  • Nielson BG, DesRoches R (2007) Seismic fragility methodology for highway bridges using a component level approach. Earthq Eng Struct Dyn 36(6):823–839

    Article  Google Scholar 

  • Oyguc R, Toros C, Abdelnaby AE (2018) Seismic behavior of irregular reinforced-concrete structures under multiple earthquake excitations. Soil Dyn Earthq Eng 104:15–32

    Article  Google Scholar 

  • Parghi A, Alam MS (2017) Seismic collapse assessment of non-seismically designed circular RC bridge piers retrofitted with FRP composites. Compos Struct 160:901–916

    Article  Google Scholar 

  • Priestley MN, Seible F, Calvi GM (1996) Seismic design and retrofit of bridges. Wiley, New York

    Book  Google Scholar 

  • Rao AS, Lepech MD, Kiremidjian AS, Sun X-Y (2017) Simplified structural deterioration model for reinforced concrete bridge piers under cyclic loading. Struct Infrastruct Eng 13(1):55–66

    Article  Google Scholar 

  • Sasmal S, Ramanjaneyulu K, Gopalakrishnan S, Lakshmanan N (2006) Fuzzy logic based condition rating of existing reinforced concrete bridges. J Perform Const Facil 20(3):261–273

    Article  Google Scholar 

  • Seible F, Priestley MN, Hegemier GA, Innamorato D (1997) Seismic retrofit of RC columns with continuous carbon fiber jackets. J Compos Constr 1(2):52–62

    Article  Google Scholar 

  • Sen R, Mullins G (2007) Application of FRP composites for underwater piles repair. Compos Part B 38:751–758

    Article  Google Scholar 

  • Streeter VL, Wylie EB (1983) Fluid Mechanics; SI Metric Ed. McGraw-Hill

  • Tesfamariam S, Goda K (2015) Seismic performance evaluation framework considering maximum and residual inter-story drift ratios: application to non-code conforming reinforced concrete buildings in Victoria, BC, Canada. Front Built Environ 1:18. https://doi.org/10.3389/fbuil.2015.00018

    Article  Google Scholar 

  • Tubaldi E, Macorini L, Izzuddin BA, Manes C, Laio F (2017) A framework for probabilistic assessment of clear-water scour around bridge piers. Struct Saf 69:11–22

    Article  Google Scholar 

  • Tubaldi E, Macorini L, Izzuddin BA, Manes C (2018) Three-dimensional mesoscale modelling of multi-span masonry arch bridges subjected to scour. Eng Struct 165:486–500

    Article  Google Scholar 

  • Valcuende M, Parra C (2010) Natural carbonation of self-compacting concretes. Constr Build Mater 24(5):848–853

    Article  Google Scholar 

  • Wang Z, Dueñas-Osorio L, Padgett JE (2014) Influence of scour effects on the seismic response of reinforced concrete bridges. Eng Struct 76:202–221

    Article  Google Scholar 

  • Xiao Y, Wu H, Martin G (1999) Prefabricated composite jacketing of RC columns for enhanced shear strength. J Struct Eng 125(3):255–264

    Article  Google Scholar 

  • Zare M, Ghafory-Ashtiany M, Bard P (1999) Attenuation law for the strong-motions in Iran. In: Proceedings of 3rd international conference on seismology and earthquake engineering

  • Zare M, Karimi-Paridari S, Sabzali S (2008) Spectral attenuation of strong motions for near source data in Iran. J Seismol Earthq Eng 10(3): 147–152. http://www.jsee.ir/index.php/jsee/article/view/139

  • Zhiguo S, Hongnan L, Kaiming B, Bingjun S, Dongsheng W (2017) Rapid repair techniques for severely earthquake-damaged circular bridge piers with flexural failure mode. Earthq Eng Eng Vib 16(2):415–433

    Article  Google Scholar 

  • Zhu B, Frangopol DM (2016) Time-variant risk assessment of bridges with partially and fully closed lanes due to traffic loading and scour. J Bridge Eng 21(6):04016021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Asadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjkesh, S.H., Asadi, P. & Hamadani, A.Z. Seismic collapse assessment of deteriorating RC bridges under multiple hazards during their life-cycle. Bull Earthquake Eng 17, 5045–5072 (2019). https://doi.org/10.1007/s10518-019-00647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-019-00647-8

Keywords

Navigation