Skip to main content
Log in

Local site effects estimation at Amatrice (Central Italy) through seismological methods

  • S.I.: Seismic Microzonation of Central Italy
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

We present the results of seismological and geophysical investigations performed by the “Istituto Nazionale di Geofisica e Vulcanologia” team operating in Amatrice village (Central Italy), in the emergency phases following the Mw 6.0 event of August 24th 2016, that caused severe damage in downtown and surrounding areas. Data from seven seismic stations equipped with both weak and strong motion sensors are analyzed in terms of standard spectral ratio to empirically define amplification function using a bedrock reference site. Ambient vibration spectral ratios between horizontal and vertical component of motion are also evaluated in a large number of sites, spread out in the investigated area, to recover the resonance frequency of the soft soil outcropping layers and to generalize the results obtained by earthquake data. Ambient noise vibration are also used for applying a 2D array approach based on surface waves techniques in order to define the near-surface velocity model and to verify its lateral variation. The results allows to better understand the amplification factors in the investigated area, showing spatial variation of site effects despite of the homogeneous shallow geological condition indicated by the microzonation studies available at moment of the described field campaign. The analysis reveals a diffuse amplification effect which reaches its maximum values in downtown area with a resonant frequency of about 2 Hz. The obtained results were used to integrate the microzonation studies and they can be used for urban planning and reconstruction activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bard PY (2002) Extracting information from ambient seismic noise: the SESAME project (Site EffectS assessment using AMbient Excitations). European Project EVG1-CT-2000-00026 SESAME

  • Bard PY (2010) From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements. In: Garevski M, Ansal A (eds) Earthquake engineering in Europe, geotechnical, geological and earthquake engineering, vol 17. Springer, New York, pp 105–123

    Google Scholar 

  • Boore DM (1972) A note on the effect of simple topography on seismic SH waves. Bull Seismol Soc Am 62(1):275–284

    Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60:29–61

    Google Scholar 

  • Bordoni P et al (2012) Preliminary results from EMERSITO, the rapid response network for site effect studies. Ann Geophys 10:1–12. https://doi.org/10.4401/ag-6153

    Article  Google Scholar 

  • Burjanek J, Fah D, Pischiutta M, Rovelli A, Calderoni G, Bard PY, NERA-JRA1 working group (2014) Site effects at sites with pronounced topography: overview and recommendations. Research report for EU project NERA

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Article  Google Scholar 

  • Cara F, Cultrera G, Riccio G, Amoroso S, Bordoni P, Bucci A, D’Alema E, D’Amico M, Cantore L, Carannante S, Cogliano R, Di Giulio G, Di Naccio D, Famiani D, Felicetta C, Fodarella A, Franceschina G, Lanzano G, Lovati S, Luzi L, Mascandola C, Massa M, Mercuri A, Milana G, Pacor F, Piccarreda D, Pischiutta M, Pucillo S, Puglia R, Vassallo M, Boniolo G, Caielli G, Corsi A, de Franco R, Tento A, Bongiovanni G, Hailemikael S, Martini M, Paciello A, Peloso A, Verrubbi V, Gallipoli MR, Tony Stabile TA, Mancini M (2019). Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies, submitted to Nature Scientific Data

  • Chiaraluce L et al (2017) The 2016 central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88(3):757–771

    Article  Google Scholar 

  • Cultrera G et al (2016) Site effect studies following the 2016 Mw 6.0 Amatrice Earthquake(Italy): the Emersito Task Force activities. Ann Geophys 59:1–12. https://doi.org/10.4401/ag-7189

    Article  Google Scholar 

  • EC8. European Committee for Standardization (CEN) (2005) Part 1: general rules, seismic actions and rules for buildings, Eurocode 8: design of Structures for Earthquake Resistance, EN 1998-1, Brussels

  • Fiorentino G, Forte A, Pagano E, Sabetta F, Baggio C, Lavorato D, Nuti C, Santini S (2018) Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes. Bull Earthq Eng 16:1399. https://doi.org/10.1007/s10518-017-0254-z

    Article  Google Scholar 

  • Foti S et al (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng 16:2367. https://doi.org/10.1007/s10518-017-0206-7

    Article  Google Scholar 

  • Geli L, Bard PY, Jullien B (1988) The effect of topography on earthquake ground motion: a review and new results. Bull Seismol Soc Am 78(1):42–63

    Google Scholar 

  • Gröchenig K (2001) Foundations of time-frequency analysis. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-0003-1

  • Grünthal G (1998) European Macroseismic Scale 1998 (EMS-98). Center Europèen de Géodynamique et de Séismologie, Luxembourg, http://www.ecgs.lu/cahiers

  • Hailemikael S, Lenti L, Martino S, Paciello A, Rossi D, Mugnozza GS (2016) Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography. Geophys J Int 206(1):1–18

    Article  Google Scholar 

  • Iervolino I, Baltzopoulos G, Chioccarelli E, Suzuki A (2017) Seismic actions on structures in the near-source region of the 2016 central Italy sequence. Bull Earthq Eng 12:1–19. https://doi.org/10.1007/s10518-017-0295-3

    Article  Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bull Seismol Soc Am 88:228–241

    Google Scholar 

  • Lanzano G, Luzi L, Pacor F, Puglia R, D’Amico M, Felicetta C, Russo E (2016) Preliminary analysis of the accelerometric recordings of the August 24th, 2016 Mw 6.0 Amatrice earthquake. Ann Geophys. https://doi.org/10.4401/ag-7201

    Article  Google Scholar 

  • Luzi L, Puglia R, Russo E, ORFEUS WG5 (2016) Engineering strong motion database, version 1.0. Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology. https://doi.org/10.13127/ESM

  • Luzi L et al (2017) The Central Italy seismic sequence between August and December 2016: analysis of strong-motion observations. Seismol Res Lett 88(5):1219–1231. https://doi.org/10.1785/0220170037

    Article  Google Scholar 

  • Margheriti L et al (2011) Rapid response seismic networks in Europe: lessons learnt from the L’Aquila earthquake emergency. Ann Geophys 54(4):392–399

    Google Scholar 

  • Michele M et al (2016) The Amatrice 2016 seismic sequence: a preliminary look at the mainshock and aftershocks distribution. Ann Geophys. https://doi.org/10.4401/ag-7227.b

    Article  Google Scholar 

  • Milana G, Azzara RM, Bertrand E, Bordoni P, Cara F, Cogliano R, Cultrera G, Di Giulio G, Duval AM, Fodarella A, Marcucci S, Pucillo S, Régnier J, Riccio G (2011) The contribution of seismic data in microzonation studies for downtown L’Aquila. Bull Earthq Eng 9(3):41–759

    Article  Google Scholar 

  • Milana G, Bordoni P, Cara F, Di Giulio G, Hailemikael S, Rovelli A (2014) 1D velocity structure of the Po River plain (Northern Italy) assessed by combining strong motion and ambient noise data. Bull Earthq Eng 12(5):2195–2209

    Article  Google Scholar 

  • Mucciarelli M, Gallipoli MR, Di Giacomo D, Di Nota F, Nino E (2005) The influence of wind on measurements of seismic noise. Geophys J Int 161(2):303–308. https://doi.org/10.1111/j.1365-246X.2004.02561.x

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using ambient noise on the ground surface. Q R Rail Tech Res Inst 30(1):25–33

    Google Scholar 

  • NTC08 (2008) Ministero delle Infrastrutture e dei Trasporti (NTC) (2008) Norme tecniche per le costruzioni, Ministero delle Infrastrutture e dei Trasporti, Decreto Ministeriale del 14 gennaio 2008, Supplemento ordinario alla G.U. n. 29 del 4 febbraio 2008

  • NTC18 (2018) Ministero delle Infrastrutture e dei Trasporti (NTC) (2018) Norme tecniche per le costruzioni, Ministero delle Infrastrutture e dei Trasporti, Decreto Ministeriale del 17 gennaio 2018, Supplemento ordinario alla G.U. n. 42 del 20 febbraio 2018

  • Paolucci R (2002) Amplification of earthquake ground motion by steep topographic irregularities. Earthq Eng Struct Dyn 31:1831–1853

    Article  Google Scholar 

  • Pischiutta M, Cultrera G, Caserta A, Luzi L, Rovelli A (2010) Topographic effects on the hill of Nocera Umbra, central Italy. Geophys J Int 182(2):977–987

    Article  Google Scholar 

  • Pischiutta M, Cianfarra P, Salvini F, Cara F, Vannoli P (2018) A systematic analysis of directional site effects at stations of the Italian seismic network to test the role of local topography. Geophys J Int 214(1):635–650. https://doi.org/10.1093/gji/ggy133

    Article  Google Scholar 

  • Pizzi A, Di Domenica A, Gallovič F, Luzi L, Puglia R (2017) Fault segmentation as constraint to the occurrence of the main shocks of the 2016 Central Italy seismic sequence. Tectonics 36(11):2370–2387

    Article  Google Scholar 

  • Rossi A, Tertulliani A, Azzaro R, Graziani L, Rovida A, Maramai A, Pessina V, Hailemikael S, Buffarini G, Bernardini F, Camassi R, Del Mese S, Ercolani E, Fodarella A, Locati M, Martini G, Paciello A, Paolini S, Arcoraci L, Castellano C, Verrubbi V, Stucchi M (2019) The 2016-2017 earthquake sequence in Central Italy: macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00556-w

    Article  Google Scholar 

  • Scherbaum F, Hinzen KG, Ohrnberger M (2003) Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys J Int 152(3):597–661

    Article  Google Scholar 

  • SISMIKO Working Group (2016) Rapporto preliminare sulle attività svolte dal gruppo operativo SISMIKO a seguito del terremoto di Amatrice Mw 6.0 (24 agosto 2016, Italia centrale). https://doi.org/10.5281/zenodo.157546

  • SM Working Group (2015) Guidelines for seismic microzonation, conference of regions and autonomous provinces of Italy—Civil Protection Department, Rome, http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf; Access July 2018 (Original Italian Edition: Gruppo di lavoro MS, Indirizzi e criteri per la microzonazione sismica, Conferenza delle Regioni e delle Province autonome—Dipartimento della protezione civile, Roma, 2008, 3 vol. e Dvd)

  • Sorrentino L, Cattari S, Da Porto F, Magenes G, Penna A (2018) Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull Earthq Eng. https://doi.org/10.1007/s10518-018-0370-4

    Article  Google Scholar 

  • Spudich P, Hellweg M, Lee HK (1996) Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: implications for mainshocks motions. Bull Seism Soc Am 86:193–208

    Google Scholar 

  • Tokimatsu K (1997) Geotechnical site characterization using surface waves. In: 1st International conference on earthquake geotechnical engineering, vol 3. Balkema, Rotterdam, pp 1333–1368

  • Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. J Seismolog 12(1):1–19

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Civil Defense people, in particular Dr. Giuseppe Naso, for promoting and encouraging the activities propaedeutic to SM in Amatrice and the CNR-IGAG researchers that helped us in understanding the geological setting of the area. We thank the reviewers and the Editor, who provided valuable comments and suggestions for improvements to our manuscript. A special gratitude to local authorities and inhabitants of Amatrice that always supported our activities in the hard time of the emergency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Milana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milana, G., Cultrera, G., Bordoni, P. et al. Local site effects estimation at Amatrice (Central Italy) through seismological methods. Bull Earthquake Eng 18, 5713–5739 (2020). https://doi.org/10.1007/s10518-019-00587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-019-00587-3

Keywords

Navigation