Asteris PG, Chrysostomou CZ, Giannopoulos IP, Smyrou E (2011) Masonry infilled reinforced concrete frames with openings. In: III ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Corfu, Greece, May 2011
Asteris PG, Giannopoulos IP, Chrysostomou CZ (2012) Modeling of infilled frames with openings. Open Constr Build Technol J 6:81–91
Article
Google Scholar
Asteris PG, Cotsovos DM, Chrysostomou CZ, Mohebkhah A, Al-Chaar GK (2013) Mathematical micromodeling of infilled frames: state of the art. Eng Struct 56:1905–1921
Article
Google Scholar
Asteris PG, Cavaleri L, Di Trapani F, Sarhosis V (2016) A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads. Struct Infrastruct Eng 12(5):551–566
Article
Google Scholar
ATC 40 (1996) Applied technology council. Seismic evaluation and retrofit of concrete buildings, Redwood City
Google Scholar
Bertoldi SH, Decanini LD, Gavarini C (1993) Telai tamponati soggetti ad azione sismica, un modello semplificato: confronto sperimentale e numerico (in Italian). In: Proceedings of the VI Italian conference on seismic engineering (ANIDIS). Perugia, Italy
Cardone D, Flora A (2017) Multiple inelastic mechanisms analysis (MIMA): a simplified method for the estimation of the seismic response of RC frame buildings. Eng Struct 145:368–380
Article
Google Scholar
Carr AJ (2016) RUAUMOKO2D—The Maori God of volcanoes and earthquakes. Inelastic Analysis Finite Element program, Christchurch
Google Scholar
Cavaleri L, Di Trapani F (2015) Prediction of the additional shear action on frame members due to infills. Bull Earthq Eng 13(5):1425–1454
Article
Google Scholar
Chrysostomou CZ, Asteris PG (2012) On the in-plane properties and capacities of infilled frames. Eng Struct 41:385–402
Article
Google Scholar
Crisafulli FJ (1997) Seismic behaviour of reinforced concrete structures with masonry infills. Ph.D. thesis, Department of Civil Engineering and Natural Resources, University of Canterbury, Christchurch, New Zealand
Crisafulli FJ, Carr AJ, Park R (2000) Analytical modelling of infilled frames structures: a general review. Bull N Z Soc Earthq Eng 33(1):30–47
Google Scholar
De Luca F, Woods GED, Galasso C, D’Ayala D (2018) RC infilled building performance against the evidence of the 2016 EEFIT Central Italy post-earthquake reconnaissance mission: empirical fragilities and comparison with the FAST method. Bull Earthq Eng 16:2943–2969. https://doi.org/10.1007/s10518-017-0289-1
Article
Google Scholar
Del Vecchio C, Gentile R, Di Ludovico M, Uva G, Pampanin S (2018) Implementation and validation of the simple lateral mechanism analysis (SLaMA) for the seismic performance assessment of a damaged case study building. J Earthq Eng. https://doi.org/10.1080/13632469.2018.1483278
Google Scholar
EC8, European Committee for Standardisation (CEN) (2005) Eurocode 8: design of structures for earthquake resistance Part 3: strengthening and repair of buildings. Belgium, Brussels
Google Scholar
Furtado A, Rodrigues H, Arêde A, Varum H, Grubišić M, Šipoš TK (2018a) Prediction of the earthquake response of a three-storey infilled RC structure. Eng Struct 171:214–235
Article
Google Scholar
Furtado A, Rodrigues H, Arêde A, Varum H (2018b) Out-of-plane behavior of masonry infilled RC frames based on the experimental tests available: a systematic review. Constr Build Mater 168:831–848
Article
Google Scholar
Gentile R (2017) Extension, refinement and validation of the simple lateral mechanism analysis (SLaMA) for the seismic assessment of RC structures. PhD thesis, Department of Civil, Environmental and Landscape, Building Engineering and Chemistry, Polytechnic University of Bari, Bari, Italy
Gentile R, Del Vecchio C, Pampanin S (2017) Seismic assessment of a RC case study building using the simple lateral mechanism analysis, SLaMA, method. In: 6th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering. Rhodes Island, Greece, 15–17 June 2017
Gentile R, Uva G, Pampanin S (2018) Mechanical interpretation of infills-to-frame interaction: contributions to the global base shear for strut-based frame models. In: 16th European conference on earthquake engineering (16ECEE). Thessaloniki, Greece, 18–21 June 2018
Gentile R, Del Vecchio C, Pampanin S, Raffaele D, Uva G (2019a) Refinement and validation of the Simple Lateral Mechanism Analysis (SLaMA) procedure for RC bare frames. J Earthq Eng. https://doi.org/10.1080/13632469.2018.1560377
Gentile R, Pampanin S, Raffaele D, Uva G (2019b) Non-linear analysis of RC masonry-infilled frames using the SLaMA method. Part 1: mechanical interpretation of the infill/frame interaction and formulation of the procedure. Bull Earthq Eng (in press)
Holmes M (1961) Steel frames with brickwork and concrete infilling. ICE Proc 19(4):473–478
Google Scholar
King DJ, Priestley MJN, Park R (1986) Computer programs for concrete column design. Research report 86/12, Department of Civil Engineering
Kowalsky MJ, Priestley MJN (2000) Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. ACI Struct J 97:388–396
Google Scholar
Landi L, Tardini A, Diotallevi PP (2016) A procedure for the displacement-based seismic assessment of infilled RC frames. J Earthq Eng 20(7):1077–1103
Article
Google Scholar
Magenes G, Pampanin S (2004) Seismic response of gravity-load design frames with masonry infills. In: 13th world conference on earthquake engineering
Mander JB, Priestley MJN, Park R (1988) Theoretical stress strain model for confined concrete. J Struct Eng 114(8):1804–1826
Article
Google Scholar
Montejo LA, Kowalsky MJ (2007) Set of codes for the analysis of reinforced concrete members. Raleigh, North Carolina
Google Scholar
Morandi P, Hak S, Magenes G (2011) Comportamento sismico delle tamponature in laterizio in telai in C. A.: definizione dei livelli prestazionali e calibrazione di un modello numerico (in Italian). In: XIV Convegno ‘l’ingegneria sismica in Italia’ (ANIDIS)
NZSEE New Zealand Society for Earthquake Engineering (2017) The seismic assessment of existing buildings—technical guidelines for engineering assessments. Wellington, New Zealand
Google Scholar
Pampanin S, Kam WY, Akguzel U, Tasligedik AS, Quintana Gallo P (2012) Seismic performance of reinforced concrete buildings in the christchurch CBD in 22 February 2011 earthquake. In: Part I: overview, University of Canterbury, Christchurch, New Zealand
Park R (1995) A static force-based procedure for the seismic assessment of existing reinforced concrete moment resisting frames. Bull N Z Soc Earthq Eng 30(3):213–226
Google Scholar
Priestley MJN (1997) Displacement-based seismic assessment of reinforced concrete buildings. J Earthq Eng 1(1):157–192
Google Scholar
Priestley MJN, Calvi G (1991) Towards a capacity-design assessment procedure for reinforced concrete frames. Earthq Spectra 7(3):413–437
Article
Google Scholar
Priestley MJN, Calvi GM, Kowalsky MJ (2007) Displacement-based seismic design of structures. IUSS Press, Pavia
Google Scholar
Ricci P, Di Domenico M, Verderame GM (2018) Empirical-based out-of-plane URM infill wall model accounting for the interaction with in-plane demand. Earthquake Eng Struct Dyn 47:802–827
Article
Google Scholar
Santhi MH, Knight GMS, Muthumani K (2005) Evaluation of seismic response of soft-storey infilled frames. Computers and Concrete 2(6):423–437
Article
Google Scholar
Sharpe RD (1976) The seismic response of inelastic structures. PhD thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand