Skip to main content
Log in

Seismic capacity and multi-mechanism analysis for dry-stack masonry arches subjected to hinge control

  • S.I. : 10th IMC conference
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Masonry arches are vulnerable to seismic actions. Over the last few years, extensive research has been carried out to develop strategies and methods for their seismic assessment and strengthening. The application of constant horizontal accelerations to masonry arches is a well-known quasi-static method, which approximates dynamic loading effects and quantifies their stability, while tilting plane testing is a cheap and effective strategy for experimentation of arches made of dry-stack masonry. Also, the common strengthening techniques for masonry arches are mainly focusing on achieving full strength of the system rather than stability. Through experimentation of a dry-stack masonry arch it has been shown that the capacity of an arch can be increased, and the failure controlled by defining hinge positions through reinforcement. This paper utilizes experimentally obtained results to introduce: (1) static friction and resulting mechanisms; and (2) the post-minimum mechanism reinforcement requirements into the two-dimensional limit analysis-based kinematic collapse load calculator (KCLC) software designed for the static seismic analysis of dry-stack masonry arches. Computational results are validated against a series of experimental observations based on tilt plane tests and good agreement is obtained. Discrete element models to represent the masonry arch with different hinge configurations are also developed to establish a validation trifecta. The limiting mechanism to activate collapse of arches subjected to hinge control is investigated and insights into the optimal reinforcement to be installed in the arch are derived. It is envisaged that the current modelling approach can be used by engineers to understand stability under horizontal loads and develop strengthening criteria for masonry arches of their care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Alexakis H, Makris N (2014) Limit equilibrium analysis and the minimum thickness of circular masonry arches to withstand lateral inertial loading. Arch Appl Mech 8(5):757–772

    Article  Google Scholar 

  • Alexandros L, Kouris S, Triantafillou TC (2018) State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr Build Mater 188:1221–1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039

    Article  Google Scholar 

  • Anania L, D’Agata G (2017) Limit Analysis of vaulted structures strengthened by an innovative technology in applying CFRP. Constr Build Mater 145:336–346. https://doi.org/10.1016/j.conbuildmat.2017.03.212

    Article  Google Scholar 

  • Angelillo M (ed) (2014) Mechanics of masonry structures. Springer, London

    Google Scholar 

  • Bertolesi E, Milani G, Carozzi FG, Poggi C (2018) Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: numerical analyses. Compos Struct 187:385–402

    Article  Google Scholar 

  • Bhattacharya S, Nayak S, Dutta SC (2014) A critical review of retrofitting methods for unreinforced masonry structures. Int J Disaster Risk Reduct 7:51–67

    Article  Google Scholar 

  • Borri A, Castori G, Corradi M (2011) Intrados strengthening of brick masonry arches with composite materials. Compos Part B 42:1164–1172

    Article  Google Scholar 

  • Bui TT, Limam A, Sarhosis V, Hjiaj M (2017) Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng Struct 136:277–294

    Article  Google Scholar 

  • Calderini C, Lagomarsino S (2014) Seismic response of masonry arches reinforced by tie-rods: static tests on a scale model. J Struct Eng 141(5):1. https://doi.org/10.1061/(asce)st.1943-541x.0001079

    Article  Google Scholar 

  • Cancelliere I, Imbimbo M, Sacco E (2010) Experimental tests and numerical modelling of reinforced masonry arches. Eng Struct 32:776–792

    Article  Google Scholar 

  • Carozzi FG, Poggi C, Bertolesi E, Milani G (2018) Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: experimental evaluation. Compos Struct 187:466–480

    Article  Google Scholar 

  • Ceroni F, Salzano P (2018) Design provisions for FRCM systems bonded to concrete and masonry elements. Compos B Eng 143:230–242

    Article  Google Scholar 

  • Clemente P (1998) Introduction to dynamics of stone arches. Earthq Eng Struct Dyn 27(5):513–522

    Article  Google Scholar 

  • Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the Symposium of the International Society for Rock Mechanics, Nancy, France, vol 1, pp 11–18

  • De Lorenzis L, DeJong M, Ochsendorf J (2007) Failure of masonry arches under impulse base motion. Earthq Eng Struct Dyn 36(14):2119–2136

    Article  Google Scholar 

  • De Luca A, Giordano A, Mele E (2004) A simplified procedure for assessing the seismic capacity of masonry arches. Eng Struct 26(13):1915–1929

    Article  Google Scholar 

  • DeJong M (2009) Seismic assessment strategies for masonry structures. Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts

  • DeJong MJ, De Lorenzis L, Adams S, Ochsendorf JA (2008) Rocking stability of masonry arches in seismic regions. Earthq Spectra 24(4):847–865

    Article  Google Scholar 

  • De Santis S, de Felice G (2014) Overview of railway masonry bridges with a safety factor estimate. Int J Archit Herit 8(3):452–474

    Article  Google Scholar 

  • De Santis S, Hadad HA, De Caso y Basalo F, de Felice G, Nanni A (2018a) Acceptance criteria for tensile characterization of fabric-reinforces cementitious matrix systems for concrete and masonry repair. J Compos Constr 22(6):04018048. https://doi.org/10.1061/(asce)cc.1943-5614.0000886

    Article  Google Scholar 

  • De Santis S, Roscini F, de Felice G (2018b) Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout. Compos B 141:20–36

    Article  Google Scholar 

  • Dimitri R, Tornabene F (2015) A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Eng Fail Anal 52:1–34

    Article  Google Scholar 

  • Fanning PJ, Sobczak L, Boothby TE, Salomoni V (2005) Load testing and model simulations for a stone arch bridge. Bridge Struct 1(4):367–378

    Article  Google Scholar 

  • Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140(1):317–336

    Article  Google Scholar 

  • Formisano A, Marzo A (2017) Simplified and refined methods for seismic vulnerability assessment and retrofitting of an Italian cultural heritage masonry building. Comput Struct 180:13–26. https://doi.org/10.1016/j.compstruc.2016.07.005

    Article  Google Scholar 

  • Gaetani A, Lourenço PB, Monti G, Moroni M (2016) Shaking table tests and numerical analysis on a scaled dry-joint arch undergoing windowed sign pulses. Bull Earthq Eng 1:2. https://doi.org/10.1007/s10518-017-0156-0

    Article  Google Scholar 

  • Gattesco N, Boem I, Adretta V (2018) Experimental behavior of non-structural masonry vaults reinforced through fibre-reinforced mortar coating and sujected to cyclic horizontal loads. Eng Struct 172:419–431

    Article  Google Scholar 

  • Giamundo V, Sarhosis V, Lignola GP, Sheng Y, Manfredi G (2014) Evaluation of different computational strategies for modelling low strength masonry. Eng Struct 73:160–169

    Article  Google Scholar 

  • Gilbert M, Melbourne C (1994) Rigid-block analysis of masonry structures. Struct Eng 72(21):356–361

    Google Scholar 

  • Group, I.C. (2015) 3DEC version 5.00 distinct-element modeling of jointed and blocky material in 3D. Minneapolis

  • Hendry AW (1998) Structural masonry. Palgrave Macmillan, Macmillan

    Book  Google Scholar 

  • Heydariha JZ, Ghaednia H, Nayak S, Das S, Bhattacharya S, Dutta SC (2019) Experimental and field performance of pp band-rertrofitted masonry: evaluation of seismic behaviour. J Perform Constr Facil 33(1):04018086. https://doi.org/10.1061/(asce)cf.1943-5509.0001233

    Article  Google Scholar 

  • Heyman J (1966) The stone skeleton. Int J Solids Struct 2(2):249–279

    Article  Google Scholar 

  • Heyman J (1969) The safety of masonry arches. Int J Mech Sci 11(4):363–385

    Article  Google Scholar 

  • Huerta S (2005) The use of simple models in the teaching of the essentials of masonry arch behavior.  In: Theory and practice of constructions: knowledge, means and models. Didactis and research experiences. Fondazione Flaminia, Ravenna, Italia, pp 747–761. ISBN 888990003 2

  • Krstevska L, Tashkov L, Naumovski N, Florio G, Formisano A, Fornaro A, Landolfo R (2010) In-situ experimental testing of four historical buildings damaged during the 2009 L’Aquila earthquake. In: COST ACTION C26: Urban Habitat Constructions under Catastrophic Events—Proceedings of the Final Conference, pp 427–432

  • Modena C, Tecchio G, Pellegrino C, da Porto F, Donà M, Zampieri P, Zanini MA (2015) Reinforced concrete and masonry arch bridges in seismic areas: typical deficiencies and retrofitting strategies. Struct Infrastruct Eng 11(4):415–442. https://doi.org/10.1080/15732479.2014.951859

    Article  Google Scholar 

  • Ochsendorf JA (2002) Collapse of masonry structures. University of Cambridge, Cambridge

    Google Scholar 

  • Oliveira DV, Basilio I, Lourenço PB (2010) Experimental behavior of FRP strengthened masonry arches. J Compos Constr 14(3):312–322

    Article  Google Scholar 

  • Oppenheim IJ (1992) The masonry arch as a four-link mechanism under base motion. Earthq Eng Struct Dyn 21(11):1005–1017

    Article  Google Scholar 

  • Pelà L, Aprile A, Benedetti A (2009) Seismic assessment of masonry arch bridges. Eng Struct 31(8):1777–1788

    Article  Google Scholar 

  • Pelà L, Aprile A, Benedetti A (2013) Comparison of seismic assessment procedures for masonry arch bridges. Constr Build Mater 38:381–394

    Article  Google Scholar 

  • Sarhosis V, Sheng Y (2014) Identification of material parameters for low bond strength masonry. Eng Struct 60:100–110

    Article  Google Scholar 

  • Sarhosis V, Bagi K, Lemos JV, Milani G (2016a) Computational modeling of masonry structures using the discrete element method. IGI Global, Hershey

    Book  Google Scholar 

  • Sarhosis V, De Santis S, di Felice G (2016b) A review of experimental investigations and assessment methods for masonry arch bridges. Struct Infrastruct Eng 12(11):1439–1464

    Google Scholar 

  • Sarhosis V, Asteris P, Wang T, Hu W, Han Y (2016c) On the stability of colonnade structural systems under static and dynamic loading conditions. Bull Earthq Eng 14(4):1131–1152

    Article  Google Scholar 

  • Stockdale G (2016) Reinforced stability-based design: a theoretical introduction through a mechanically reinforced masonry arch. Int J Masonry Res and Innov 1(2):101–142

    Article  Google Scholar 

  • Stockdale G, Milani M (2018a) Diagram based assessment strategy for first-order analysis of masonry arches. J Build Eng 22:122–129

    Article  Google Scholar 

  • Stockdale G, Milani M (2018b) Interactive MATLAB-CAD limit analysis of horizontally loaded masonry arches. In: 10th IMC Conference Proceedings. International Masonry Society, pp 208–306

  • Stockdale G, Sarhosis V, Milani G (2018a) Increase in seismic resistance for a dry joint masonry arch subjected to hinge control. In: 10th IMC Conference Proceedings. International Masonry Society, pp 968–981

  • Stockdale G, Tiberti S, Camilletti D, Papa G, Habieb A, Bertolesi E, Milani G, Casolo S (2018b) Kinematic collapse load calculator: circular arches. SoftwareX 7:174–179

    Article  Google Scholar 

  • Tralli A, Alassandri C, Milani G (2014) Computational methods for masonry vaults: a review of recent results. Open J Civ Eng 8(1):272–287

    Article  Google Scholar 

  • Zampieri P, Zanini MA, Modena C (2015) Simplified seismic assessment of multi-span masonry arch bridges. Bull Earthq Eng 13(9):2629–2646

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Global Challenge Research Fund provided by British Academy (CI170241). We also thank our colleagues from Newcastle University who provided insight and expertise in the area of experimental testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. Stockdale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Equilibrium equations

Appendix: Equilibrium equations

1.1 Notation list

[BCj]

Balance matrix for mechanism Type j

f gi

Gravitational force of element i

h a

Horizontal reaction force for hinge point a

M a

Reaction moment for slip joint a

{qj}

Constants vector for mechanism Type j

{rj}

Reaction vector for mechanism Type j

v a

Vertical reaction force at hinge point a

α a

Angle relationship between the reaction vector, block boundary line and friction angle for slip joint a (see Sects. 2.3 and 2.4)

Δx a,b

Horizontal difference between hinge points a and b

Δx CMi,b

Horizontal distance between element i’s center of mass and hinge point a

Δy a,b

Vertical difference between hinge points b and a

Δy CMi,b

Vertical difference between element i’s center of mass and hinge point b

λ a

Collapse multiplier for constant horizontal acceleration

θ t

Tilting plane rotation angle

1.2 Type I mechanism: horizontal acceleration

$$\left[ {BC_{I} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g3} } \\ 0 \\ {f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{I} } \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {h_{4} } \\ {v_{4} } \\ {\lambda_{a} } \\ \end{array} } \\ \end{array} } \right]\quad \left\{ {q_{I} } \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} } \\ {f_{g2}\Delta x_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g3} } \\ { - f_{g3}\Delta x_{3,CM3} } \\ \end{array} } \\ \end{array} } \right]$$

1.3 Type I mechanism: horizontal acceleration and gravity decomposition

$$\left[ {BC_{It} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g3} } \\ 0 \\ {f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{II} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {h_{4} } \\ {v_{4} } \\ {\lambda_{a} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]\quad \left\{ {q_{II} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}l} { - f_{g1} \sin \left( {\theta_{t} } \right)} \hfill \\ {f_{g1} \cos \left( {\theta_{t} } \right)} \hfill \\ { - f_{g1} \cos \left( {\theta_{t} } \right)\Delta x_{1,CM1} + f_{g1} \sin \left( {\theta_{t} } \right)\Delta y_{CM1,1} } \hfill \\ { - f_{g2} \sin \left( {\theta_{t} } \right)} \hfill \\ {f_{g2} \cos \left( {\theta_{t} } \right)} \hfill \\ {f_{g2} \cos \left( {\theta_{t} } \right)\Delta x_{2,CM2} + f_{g2} \sin \left( {\theta_{t} } \right)\Delta y_{2,CM2} } \hfill \\ { - f_{g3} \sin \left( {\theta_{t} } \right)} \hfill \\ {f_{g3} \cos \left( {\theta_{t} } \right)} \hfill \\ { - f_{g3} \cos \left( {\theta_{t} } \right)\Delta x_{3,CM3} + f_{g3} \sin \left( {\theta_{t} } \right)\Delta y_{3,CM3} } \hfill \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.4 Type II mechanism: horizontal acceleration

$$\left[ {BC_{II} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ { - \tan \left( {\alpha_{1} } \right)} \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 1 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g3} } \\ 0 \\ {f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ { - 1} \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{II} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {h_{4} } \\ {v_{4} } \\ {\begin{array}{*{20}c} {\lambda_{a} } \\ {M_{1} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]\quad \left\{ {q_{II} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} } \\ {f_{g2}\Delta x_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g3} } \\ {\begin{array}{*{20}c} { - f_{g3}\Delta x_{3,CM3} } \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.5 Type III mechanism: horizontal acceleration

$$\left[ {BC_{III} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\tan \left( {\alpha_{1} } \right)} \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {\tan \left( {\alpha_{4} } \right)} \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g3} } \\ 0 \\ {f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ { - 1} \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ { - 1} \\ \end{array} } \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{III} } \right\} = \begin{array}{*{20}l} {\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {h_{4} } \\ {v_{4} } \\ {\begin{array}{*{20}c} {\lambda_{a} } \\ {\begin{array}{*{20}c} {M_{1} } \\ {M_{4} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\quad } \hfill \\ \end{array} \left\{ {q_{III} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} } \\ {f_{g2}\Delta x_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g3} } \\ {\begin{array}{*{20}c} { - f_{g3}\Delta x_{3,CM3} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.6 Type IV mechanism: horizontal acceleration

$$\left[ {BC_{IV} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\tan \left( {\alpha_{1} } \right)} \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {\tan \left( {\alpha_{3} } \right)} \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g3} } \\ 0 \\ {f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ { - 1} \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 1 \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ { - 1} \\ \end{array} } \\ 0 \\ 0 \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{IV} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {h_{4} } \\ {v_{4} } \\ {\begin{array}{*{20}c} {\lambda_{a} } \\ {\begin{array}{*{20}c} {M_{1} } \\ {M_{3} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]\quad \left\{ {r_{IV} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} } \\ {f_{g2}\Delta x_{2,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g3} } \\ {\begin{array}{*{20}c} { - f_{g3}\Delta x_{3,CM3} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.7 Type V mechanism: horizontal acceleration

$$\left[ {BC_{V} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\tan \left( {\alpha_{1} } \right)} \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 1 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,2} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\Delta x_{2,3} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{V} } \right\} = \begin{array}{*{20}l} {\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{3} } \\ {v_{3} } \\ \end{array} } \\ {\lambda_{a} } \\ \end{array} } \right]} \hfill \\ \end{array} \quad \left\{ {q_{V} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} } \\ {f_{g2}\Delta x_{2,CM2} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.8 Type VI mechanism: horizontal acceleration

$$\left[ {BC_{VI} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\tan \left( {\alpha_{1} } \right)} \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 1 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ {\Delta x_{1,2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{2,4} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{2,4} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} {f_{g2} + f_{g3} } \\ 0 \\ {f_{g2}\Delta y_{2,CM2} + f_{g3}\Delta y_{2,CM3} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{VI} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{2} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{2} } \\ {h_{4} } \\ {v_{4} } \\ \end{array} } \\ {\lambda_{a} } \\ \end{array} } \hfill \\ \end{array} } \right]\quad \left\{ {q_{VI} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} } \\ { - f_{g1}\Delta x_{1,CM1} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g2} + f_{g3} } \\ { - f_{g2}\Delta x_{2,CM2} - f_{g3}\Delta x_{2,CM3} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$

1.9 Type VII mechanism: horizontal acceleration

$$\left[ {BC_{VII} } \right] = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\tan \left( {\alpha_{1} } \right)} \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ 1 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ { -\Delta y_{3,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - 1} \\ 0 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ { -\Delta x_{1,3} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 1 \\ 0 \\ {\Delta y_{3,4} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 1 \\ { -\Delta x_{3,4} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {f_{g1} + f_{g2} } \\ 0 \\ { - f_{g1}\Delta y_{CM1,1} - f_{g2}\Delta y_{CM2,1} } \\ \end{array} } \\ {\begin{array}{*{20}c} { - f_{g3} } \\ 0 \\ { - f_{g3}\Delta y_{3,CM3} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$
$$\left\{ {r_{VII} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {h_{1} } \\ {v_{1} } \\ {h_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} {v_{3} } \\ {h_{4} } \\ {v_{4} } \\ \end{array} } \\ {\lambda_{a} } \\ \end{array} } \hfill \\ \end{array} } \right]\quad \left\{ {q_{VII} } \right\} = \left[ {\begin{array}{*{20}l} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {f_{g1} + f_{g2} } \\ { - f_{g1}\Delta x_{1,CM1} - f_{g2}\Delta x_{1,CM2} } \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ {f_{g3} } \\ { - f_{g3}\Delta x_{3,CM3} } \\ \end{array} } \\ 0 \\ \end{array} } \hfill \\ \end{array} } \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockdale, G.L., Sarhosis, V. & Milani, G. Seismic capacity and multi-mechanism analysis for dry-stack masonry arches subjected to hinge control. Bull Earthquake Eng 18, 673–724 (2020). https://doi.org/10.1007/s10518-019-00583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-019-00583-7

Keywords

Navigation