Abrahamczyk L, Schwarz J, Lobos D, Maiwald H (2010) Das Magnitude 8.8 Maule (Chile)-Erdbeben vom 27. Februar, 2010—Ingenieuranalyse der Erdbebenschäden. Bautechnik 87(8):462–473
Article
Google Scholar
Abrahamczyk L, Schwarz J, Leipold M (2016) Normenbezogene Schadenserwartung von Stahlbetonrahmensystemen in Schwach- und Starkbebengebieten. Bautechnik 93(4):265–277
Article
Google Scholar
Al Hanoun MH, Abrahamczyk L, Schwarz J (2017) Numerical simulation of RC frame structures with infill walls under consideration of out-of-plane behavior. In: Proceedings 16th world conference on earthquake engineering (WCEE), Santiago, Chile, 9–13 January 2017, paper-no 4917
Braga F, Manfredi V, Masi A, Salvatori A, Vona M (2011) Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake. Bull Earthq Eng 9:307–324
Article
Google Scholar
Cardone D, Perrone G (2015) Developing fragility curves and loss functions for masonry infill walls. Earthq Struct 9:257–279
Article
Google Scholar
Cavaleri L, Di Trapani F (2014) Cyclic response of masonry infilled RC frames: experimental results and simplified modelling. Soil Dyn Earthq Eng 65:224–242
Article
Google Scholar
Cavaleri L, Di Trapani F, Papia M, Macaluso G (2015) Masonry infills and RC frames interaction: literature overview and state of the art of macromodeling approach. Eur J Environ Civil Eng 19:1059–1095
Article
Google Scholar
Chang G, Mander JB (1994) Seismic energy based fatigue damage analysis of bridge columns: Part 1—evaluation of seismic capacity. State University of New York, National Center for Earthquake Engineering Research
Google Scholar
Crisafulli FJ, Carr AJ (2007) Proposed macro-model for the analysis of infilled frame structure. Bull N Z Soc Earthq Eng 40:6977
Google Scholar
Da Porto F, Guidi G, Dalla Benetta M, Verlato N (2013) Combined in-plane/out-of-plane experimental behavior of reinforced and strengthened infill masonry walls. In: Proceedings: 12th Canadian masonry symposium, Vancouver, British Columbia
Dolsek M, Fajfar P (2008) The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame—a deterministic assessment. Eng Struct 30:1991–2001
Article
Google Scholar
FEMA356 (2000) Prestandard and commentary for the seismic rehabilitation of, buildings edn. Federal Emergency Management Agency, Washington (DC)
Google Scholar
Furtado A, Rodrigues H, Arede A, Varum H (2015) Simplified macro-model for infill masonry walls considering the out-of-plane behavior. J Earthq Eng Struct Dyn 45:507–524
Article
Google Scholar
Furtado A, Rodrigues H, Arede A, Varum H (2016) Experimental evaluation of out-of-plane capacity of masonry infill walls. Eng Struct 111:48–63
Article
Google Scholar
Grünthal G, Musson RMW, Schwarz J, Stucchi M (1998) European Macroseismic Scale 1998. Cahiers de Centre Européen de Géodynamique et de Séismologie, Volume 15, Luxembourg
Kadysiewski S, Mosalam KM (2009) Modeling of unreinforced masonry infill walls considering in-plane and out-of-plane interaction. Pacific Earthquake Engineering Research Center, PEER, p 102
Google Scholar
Mander JB, Priestley MJN, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114:1804–1826
Article
Google Scholar
McKenna F, Fenves G, Scott M, Jeremic B (2000) Open system for earthquake engineering simulation (OpenSees) http://opensees.berkeley.edu
Mosalam KM, Günay S (2015) Progressive collapse analysis of reinforced concrete frames with unreinforced masonry infill walls considering in-plane/out-of-plane interaction. Earthq Spectra 31(2):921–943
Article
Google Scholar
Negro P, Verzeletti G, Magonette GE, Pinto AV (1994) Tests on a four-storey full-scale R/C frame designed according to Eurocodes 8 and 2. Preliminary report. Report EUR 15879, European Commission, Joint Research Centre, Ispra, Italy
Nelson Ponnu Durai T, Arunachalam J, Avinash Karthich L, Haran Pragalath DC, Iswarya D, Singh R (2016) Computational model for infill walls under cyclic loads. Int J Appl Eng Res 11:2786–2790
Google Scholar
Noh NM, Liberatore L, Mollaioli F, Tesfamariam S (2017) Modelling of masonry infilled RC frames subjected to cyclic loads: state of the art review and modelling with OpenSees. Eng Struct 150:599–621
Article
Google Scholar
Rodrigues H, Varum H, Costa A (2010) Simplified macro-model for infill masonry panels. J Earthq Eng 14:390–416
Article
Google Scholar
SAP2000 (2005) Linear and nonlinear static and dynamic analysis and design of three-dimensional structures, vol 10. Computers and Structures, Inc., Berkeley
Schwarz J, Abrahamczyk L, Leipold M, Swain TM (2006) Damage description for earthquake risk assessment. In: Proceedings: 1st European conference on earthquake engineering and seismology (1st ECEES), Geneva, Switzerland
Schwarz J, Abrahamczyk L, Leipold M, Wenk T (2015) Vulnerability assessment and damage description for R.C. frame structures following the EMS-98 principles. Bull Earthq Eng 13(4):1141–1159
Article
Google Scholar
Sharma A, Elegihausen R, Reddy GR (2013) Pivot hysteresis model parameters for reinforced concrete columns, joints and structures. ACI Struct J 110–S19:217–227
Stafford-Smith B (1996) Behavior of square infilled frames. J Struct Div ASCE 92(ST1):381–403
Google Scholar
Wenk T, Lacave C, Peter K (1998) The Adana-Ceyhan earthquake of June 27, 1998: report on the reconnaissance mission from July 6–12, 1998 of the Swiss Society of Earthquake Engineering and Structural Dynamics (SGEB), Swiss Society of Earthquake Engineering and Structural Dynamics, 1998 (705.85 1998 W46)