Advertisement

Bulletin of Earthquake Engineering

, Volume 16, Issue 10, pp 4443–4466 | Cite as

2D site response analysis of a cultural heritage: the case study of the site of Santa Maria di Collemaggio Basilica (L’Aquila, Italy)

  • Sara Amoroso
  • Iolanda Gaudiosi
  • Marco Tallini
  • Giuseppe Di Giulio
  • Giuliano Milana
Original Research Paper
  • 120 Downloads

Abstract

The Santa Maria di Collemaggio Basilica is an important cultural heritage site and exemplifies Romanesque-Gothic art in the Abruzzo region (central Italy). Erected in the second half of the XII century, the Basilica was severely damaged during the April 6, 2009 L’Aquila earthquake (MW 6.1). In particular, the area of the transept collapsed causing the dome to fall. A refined two-dimensional (2D) geotechnical model was built representing a section that includes the Basilica, in order to better understand the soil response of the Basilica site. The subsoil model was constrained using the geophysical and geotechnical data collected from the seismic microzonation studies, the reconstruction of private damaged buildings and other technical and scientific studies realized in the L’Aquila basin and in the area of the Basilica before and after L’Aquila earthquake. 2D site response analyses were performed to verify the presence of local site effects by comparing simulated versus experimental transfer functions. Moreover, a frequency–wavenumber (f–k) analysis was executed with the aim of evaluating the occurrence of surface waves generated within the basin. 2D seismic effects involve significant amplification in the period range of engineering interest, therein providing an appropriate elastic response spectrum for the restoration of the Basilica.

Keywords

L’Aquila earthquake 2D site response analysis Site effects Geotechnical model Aftershocks records Cultural heritage 

Notes

Acknowledgements

The study was funded by FIRB-Abruzzo Project (“Indagini ad alta risoluzione per la stima della pericolosità e del rischio sismico nelle aree colpite dal terremoto del 6 aprile 2009”, http://progettoabruzzo.rm.ingv.it/it). A special thanks to Zachary Boucias for the English language revision of the manuscript. The authors would also like to thank the anonymous reviewer for the valuable comments and suggestions to improve the paper.

References

  1. AA VV (2013) Caratterizzazione geologica, geofisica e geotecnica del sito della basilica di Collemaggio. Report Consorzio Sperimentazione Edilizia, University of L’Aquila, Italy. www.ing.univaq.it/webdisat/cse/cse.html (in Italian)
  2. Amoroso S, Del Monaco F, Di Eusebio F, Monaco P, Taddei B, Tallini M, Totani F, Totani G (2010) Campagna di indagini geologiche, geotecniche e geofisiche per lo studio della risposta sismica locale della città dell’Aquila: la stratigrafia dei sondaggi giugno-agosto 2010. Report CERFIS 1/10, University of L’Aquila, Italy. www.cerfis.it/en/download/cat_view/67-pubblicazioni-cerfis/68-reports.html (in Italian)
  3. Amoroso S, Gaudiosi I, Milana G, Tallini M (2013) Preliminary results of seismic response analyses at Santa Maria di Collemaggio Basilica (L’Aquila, Italy). In: 32nd Conference Gruppo Nazionale di Geofisica della Terra Solida (GNGTS), 19–21 November 2013, Trieste (Italy) 2:172–178. ISBN:978-88-902101-7-4Google Scholar
  4. Amoroso S, Di Naccio D, Di Giulio G, Vassallo M, Milana G (2014) Site effects along the southern flank of the L’Aquila terrace. In: 33nd Conference Gruppo Nazionale di Geofisica della Terra Solida (GNGTS), 25–27 November 2014, Bologna (Italy) 2:122-128. ISBN: 978-88-940442-2-5 (volume). ISBN:978-88-940442-0-1 (book)Google Scholar
  5. Amoroso S, Totani F, Totani G, Monaco P (2015a) Local seismic response in the Southern part of the historic centre of L’Aquila. In: Springer International Publishing (ed) Engineering Geology for Society and Territory—Urban Geology, Sustainable Planning and Landscape Exploitation 5(XVIII):1097–1100.  https://doi.org/10.1007/978-3-319-09048-1_208, Print ISBN:978-3-319-09047-4, Online ISBN:978-3-319-09048-1
  6. Amoroso S, Gaudiosi I, Milana G, Tallini M (2015b) Experimental analysis and numerical modeling of the seismic site response at Santa Maria di Collemaggio Basilica in L’Aquila. In: 3rd International Workshop on Dynamic Interaction between Soil, Monuments and Built Environment, 12–13 December 2013, Rome (Italy) 295-309. ISBN:978-88-940114-1-8Google Scholar
  7. Bard PY, Bouchon M (1980) The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves. Bull Seismol Soc Am 75:519–541Google Scholar
  8. Bard PY, Bouchon M (1985) The two-dimensional resonance of sediment-filled valleys. Bull Seismol Soc Am 75:519–541Google Scholar
  9. Bard PY, Gariel JC (1986) The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients. Bull Seismol Soc Am 76:343–346Google Scholar
  10. Bardet JP, Ich II, Lin CH (2000) EERA—a computer program for Equivalent-linear site Response Analysis of Layered Soil Deposits. University of Southern California, August 2000Google Scholar
  11. Bindi D, Parolai S, Cara F, Di Giulio G, Ferretti G, Luzi L, Monachesi G, Pacor F, Rovelli A (2009) Site amplifications observed in the Gubbio Basin, Central Italy: hints for lateral propagation effects. Bull Seismol Soc Am 99(2A):741–760CrossRefGoogle Scholar
  12. Blumetti AM, Cavinato GP, Tallini M (1996) Evoluzione Plio-Quaternaria della Conca di L’Aquila-Scoppito: studio preliminare. Il Quaternario 9(1):281–286 (in Italian) Google Scholar
  13. Bordoni P, Haines J, Milana G, Marcucci S, Cara F, Di Giulio G (2011) Seismic response of L’Aquila downtown from comparison between 2D synthetics spectral ratios of SH, P-SV and Rayleigh waves and observations of the 2009 earthquake sequence. Bull Earthq Eng 9:761–781.  https://doi.org/10.1007/s10518-011-9247-5 CrossRefGoogle Scholar
  14. Bordoni P, Del Monaco F, Milana G, Tallini M, Haines J (2014) The Seismic Response at High Frequency in Central L’Aquila: a Comparison between Spectral Ratios of 2D Modeling and Observations of the 2009 Aftershocks. Bull Seismol Soc Am 104(3):1374–1388.  https://doi.org/10.1785/0120130230 CrossRefGoogle Scholar
  15. Capon J (1969) High-resolution frequency–wavenumber spectrum analysis. IEEE 57(8):1408–1418CrossRefGoogle Scholar
  16. Cardarelli E, Cercato M (2010) Relazione sulla campagna d’indagine geofisica per lo studio della Risposta Sismica Locale della città dell’Aquila. Prova crosshole sondaggi S3-S4. Report DICEA, University of Rome La Sapienza (Italy) for CERFIS-University of L’Aquila (Italy), 13 pp www.cerfis.it (in Italian)
  17. Çelebi M, Bazzurro P, Chiaraluce L, Clemente P, Decanini L, De Sortis A, Ellsworth W, Gorini A, Kalkan E, Marcucci S, Milana G, Mollaioli F, Olivieri M, Paolucci R, Rinaldis D, Rovelli A, Sabetta F, Stephens C (2010) Recorded motions of the 6 April 2009 Mw 6.3 L’Aquila, Italy, earthquake and implications for building structural damage: overview. Earthq Spectra 26(3):651–684CrossRefGoogle Scholar
  18. CEN (2003) Eurocode 8: design provisions for earthquake resistance of structures. Part 1.1: general rules, seismic actions and rules for buildings. prEN 1998-1Google Scholar
  19. Chavez-Garcia FJ, Faccioli E (2000) Complex site effects and building codes: making the leap. J Seismolog 4(1):23–40CrossRefGoogle Scholar
  20. Chiara N (2001) Investigation of small-strain shear stiffness measured in field and laboratory geotechnical studies. MS Thesis, Department of Civil Engineering, University of Texas at Austin (Texas)Google Scholar
  21. Chiarabba C, Amato A, Anselmi M, Baccheschi P, Bianchi I, Cattaneo M, Cecere G, Chiaraluce L, Ciaccio MG, De Gori P, De Luca G, Di Bona M, Di Stefano R, Faenza L, Govoni A, Improta L, Lucente FP, Marchetti A, Margheriti L, Mele F, Michelini A, Monachesi G, Moretti M, Pastori M, Piana Agostinetti N, Piccinini D, Roselli P, Seccia D, Valoroso L (2009) The 2009 L’Aquila (central Italy) Mw 6.3 earthquake: main shock and after shocks. Geophys Res Lett 36(18):L18308.  https://doi.org/10.1029/2009gl039627 CrossRefGoogle Scholar
  22. Claprood M, Asten MW, Kristek J (2011) Using the SPAC microtremor method to identify 2D effects and evaluate 1D shear-wave velocity profile in valleys. Bull Seismol Soc Am 101(2):826–847.  https://doi.org/10.1785/0120090232 CrossRefGoogle Scholar
  23. Clementi A, Piroddi E (1986) Le città nella storia d’Italia. L’Aquila. Laterza editore, BariGoogle Scholar
  24. Cosentino D, Asti R, Nocentini M, Gliozzi E, Kotsakis T, Mattei M, Esu D, Spadi M, Tallini M, Cifelli F, Pennacchioni M, Cavuoto G, Di Fiore V (2017) New insights into the onset and evolution of the central Apennine extensional intermontane basins on the tectonically active L’Aquila Basin (central Italy). GSA Bull 129:1314–1336.  https://doi.org/10.1130/B31679.1 CrossRefGoogle Scholar
  25. Cramer CH, Real CR (1992) A statistical analysis of submitted site-effects predictions for the weak-motion blind prediction test conducted at the Turkey Flat, USA, site effects test area near Parkfield, California. In: Proceedings of the international symposium on the effects of surface geology on seismic motion, Odawara City, JapanGoogle Scholar
  26. Crespellani T, Ghinelli A Vannucchi G (1989) An evaluation of the dynamic shear modulus of a cohesive deposit near Florence, Italy. In: XII international conference on soil mechanics and foundation engineering, Rio de Janeiro (Brazil)Google Scholar
  27. De Luca G, Marcucci S, Milana G, Sanò T (2005) Evidence of low-frequency amplification in the city of L’Aquila, Central Italy, through a multidisciplinary approach including strong- and weak-motion data, ambient noise, and numerical modeling. Bull Seismol Soc Am 95:1469–1481CrossRefGoogle Scholar
  28. Del Monaco F, Tallini M, De Rose C, Durante F (2013) HVNSR survey in historical downtown L’Aquila (central Italy): site resonance properties vs. subsoil model. Eng Geol 158:34–47.  https://doi.org/10.1016/j.enggeo.2013.03.008 CrossRefGoogle Scholar
  29. Demangeot J (1965) Géomorphologie des Abruzzes Adriatiques. Centre Recherche et Documentaion Cartographique, Memoires et Documents, CNRS, Paris, 403 pp (in French) Google Scholar
  30. Di Giulio G, Gaudiosi I, Cara F, Milana G, Tallini M (2014) Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L’Aquila. Geophys J Int 198(2):848–866.  https://doi.org/10.1093/gji/ggu162 CrossRefGoogle Scholar
  31. Durante F, Di Giulio G, Tallini M, Milana G, Macerola L (2017) A multidisciplinary approach to the seismic characterization of a mountain top (Monteluco, central Italy). Phys Chem Earth Parts A/B/C 98:119–135CrossRefGoogle Scholar
  32. Esposito C, Scarascia Mugnozza G, Tallini M, Della Seta M (2014) Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L’Aquila basin (central Apennines, Italy). In: EGU General Assembly 2014, Vienna (Austria) id.12238Google Scholar
  33. Galli PAC, Molin D (2014) Beyond the damage threshold: the historic earthquakes of Rome. Bull Earthq Eng 12:1277–1306.  https://doi.org/10.1007/s10518-012-9409-0 CrossRefGoogle Scholar
  34. Gattulli V, Antonacci E, Vestroni F (2013) Field observations and failure analysis of the basilica S. Maria di Collemaggio after the 2009 L’Aquila earthquake. Eng Fail Anal 34:715–734CrossRefGoogle Scholar
  35. Gautam D, Forte G, Rodrigues H (2016) Site effects and associated structural damage analysis in Kathmandu Valley, Nepal. Earthq Struct 10:1013–1032.  https://doi.org/10.12989/eas.2016.10.5.1013 CrossRefGoogle Scholar
  36. Graves RW, Pitarka A, Somerville PG (1998) Ground-motion amplification in the Santa Monica area: effects of shallow basin-edge structure. Bull Seismol Soc Am 88(5):1224–1242Google Scholar
  37. Hailemikael S, Milana G, Cara F, Vassallo M, Pischiutta M, Amoroso S, Bordoni P, Cantore L, Di Giulio G, Di Naccio D, Famiani D, Mercuri A (2017) Sub-surface characterization of the Amphiteatrum Flavium area (Rome, Italy) through single-station ambient vibration measurements. Ann Geophys ISSN: 2037-416X, 60(4):S0438.  https://doi.org/10.4401/ag-7359
  38. Hinojosa-Prieto HR, Hinzen KG (2015) Seismic velocity model and near-surface geology at Mycenaean Tiryns, Argive Basin, Peloponnese, Greece. Near Surf Geophys 13:103–113.  https://doi.org/10.3997/1873-0604.2015002 CrossRefGoogle Scholar
  39. Hudson M, Idriss IM, Beikae M (1994) QUAD4M—a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base. University of California, Davis (California)Google Scholar
  40. Idriss IM, Sun JI (1992) User’s manual for SHAKE91. Center for Geotechnical Modeling, Department of Civil Engineering, University of California, Davis (California)Google Scholar
  41. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle RiverGoogle Scholar
  42. Kwok A, Stewart J, Hashash Y (2008) Nonlinear ground-response analysis of Turkey flat shallow stiff-soil site to strong ground motion. Bull Seismol Soc Am 98(1):331–343CrossRefGoogle Scholar
  43. Lacoss R, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise using arrays. Geophysics 34:21–38.  https://doi.org/10.1190/1.1439995 CrossRefGoogle Scholar
  44. Lagomarsino S, Modaressi H, Pitilakis K, Bosiljkov V, Calderini C, D’Ayala D, Benouar D, Cattari S (2010) PERPETUATE project: the proposal of a performance-based approach to earthquake protection of cultural heritage. Adv Mater Res 133–134:1119–1124.  https://doi.org/10.4028/www.scientific.net/AMR.133-134.1119 CrossRefGoogle Scholar
  45. Lanzo G, Pagliaroli A, D’Elia B (2003) Numerical study on the frequency-dependent viscous damping in dynamic response analysis of ground. In: 4th international conference on earthquake resistant engineering structures, ERES 2003, 22–24 September, Ancona (Italy)Google Scholar
  46. Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech Div EM4:859–877Google Scholar
  47. Magaldi D, Lorè A (2015) I limi rossi del sottosuolo dell’Aquila: un’indagine geologica, geotecnica e micromorfologica. Geologia Tecnica e Ambientale 1:11–32Google Scholar
  48. Magaldi D, Tallini M (2000) A micromorphological index of soil development for the Quaternary geology research. CATENA 41:261–276CrossRefGoogle Scholar
  49. Martelli L, Boncio P, Baglione M, Cavuoto G, Mancini M, Scarascia Mugnozza G, Tallini M (2012) Main geologic factors controlling site response during the L’Aquila 2009 earthquake. Ital J Geosci 131:423–439.  https://doi.org/10.3301/IJG.2012.12 Google Scholar
  50. Milana G, Azzara RM, Bergamaschi F, Bertrand E, Bordoni P, Cara F, Cogliano R, Cultrera G, Di Giulio G, Duval AM, Fodarella A, Marcucci S, Pucillo S, Régnier J, Riccio G (2011) The contribution of seismic data in microzonation studies for downtown L’Aquila. Bull Earthq Eng 9:741–759.  https://doi.org/10.1007/s10518-011-9246-6 CrossRefGoogle Scholar
  51. Modoni G, Gazzellone A (2010) Simplified theoretical analysis of the seismic response of artificially compacted gravels. In: 5th international conference on recent advance in geotechnical earthquake engineering and soil dynamics, May 2010, San Diego (California), paper #1.28.aGoogle Scholar
  52. Monaco P, Amoroso S (2016) Site effects from the building scale to the seismic microzonation scale: examples from the experience of L’Aquila. In: 6th Italian Conference of Researchers in Geotechnical Engineering Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale, CNRIG2016, 22–23 September, Bologna (Italy) Procedia Engineering. Elsevier (ed) 158:517–522.  https://doi.org/10.1016/j.proeng.2016.08.482
  53. Monaco P, Totani G, Amoroso S, Totani F, Marchetti D (2013) Site characterization by seismic dilatometer (SDMT) in the city of L’Aquila. Rivista Italiana di Geotecnica, Anno XLVII 3:8-22. ISSN 0557-1405. Pàtron Editore, Bologna (Italy)Google Scholar
  54. Moro M, Saroli M, Stramondo S, Bignami C, Albano M, Falcucci E, Gori S, Doglioni C, Polcari M, Tallini M, Macerola L, Novali F, Costantini M, Malvarosa F, Wegmüller U (2017) New insights into earthquake precursors from InSAR. Sci Rep 7:12035.  https://doi.org/10.1038/s41598-017-12058-3 CrossRefGoogle Scholar
  55. MS-AQ Working Group (2010) Microzonazione sismica per la ricostruzione dell’area aquilana. Regione Abruzzo—Dipartimento della Protezione Civile, L’Aquila, 3 vol. and CD-Rom, www.protezionecivile.gov.it/jcms/en/view_pub.wp?contentId=PUB25330 (in Italian)
  56. Nocentini M, Asti R, Cosentino D, Durante F, Gliozzi E, Macerola L, Tallini M (2017) Plio-Quaternarygeology of L’Aquila—Scoppito Basin (Central Italy). J Maps 13:563–574.  https://doi.org/10.1080/17445647.2017.1340910 CrossRefGoogle Scholar
  57. NTC (2008) D.M. 14/01/2008—Norme Tecniche per le Costruzioni, pubblicato sulla Gazzetta Ufficiale n. 29 del 4 febbraio 2008. Suppl. Ordinario n. 30. Capitolo 3 Azioni sulle costruzioni (in Italian) Google Scholar
  58. Pace B, Albarello D, Boncio P, Dolce M, Galli P, Messina P, Peruzza L, Sabetta F, Sanò T, Visini F (2011) Predicted ground motion after the L’Aquila 2009 earthquake (Italy, Mw 6.3): input spectra for seismic microzoning. Bull Earthq Eng 9(1):199–230CrossRefGoogle Scholar
  59. Pagliaroli A, Quadrio B, Lanzo G (2014) Numerical modeling of siteeffects in the Palatine Hill, Roman Forum, and Coliseum Archaeological Area. Bull Earthq Eng 12:1383–1403.  https://doi.org/10.1007/s10518-013-9436-5 CrossRefGoogle Scholar
  60. Park HJ, Kim DS, Kim DM (2013) Seismic risk assessment of architectural heritages in Gyeongju considering local site effects. Nat Hazards Earth Syst Sci 13:251–262.  https://doi.org/10.5194/nhess-13-251-2013 CrossRefGoogle Scholar
  61. Poggi V, Ermert L, Burjánek J, Michel C, Fäh D (2015) Modal analysis of 2-D sedimentary basin from frequency domain decomposition of ambient vibration array recordings. Geophys J Int 200:615–626CrossRefGoogle Scholar
  62. Potenza F, Federici F, Lepidi M, Gattulli V, Graziosi F, Colarieti A (2015) Long term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network. J Civ Struct Health Monit.  https://doi.org/10.1007/s13349-015-0146-3 Google Scholar
  63. Ranalli D, Scozzafava M, Tallini M (2004) Ground Penetrating Radar investigations for restoration of historical buildings: the case study of Collemaggio Basilica (L’Aquila, Italy). J Cult Heritage 5(1):91–99.  https://doi.org/10.1016/j.culher.2003.05.001 CrossRefGoogle Scholar
  64. Raptakis D, Chavez-Garcia F, Makra K, Pitilakis K (2000) Site effects at EuroSeisTest-I: determination of the valley structure and confrontation of observations with 1D analysis. Soil Dyn Earthq Eng 19(1):1–22CrossRefGoogle Scholar
  65. Real CR, Shakal AF, Tucker BE (2006) Turkey Flat, USA site effects test area: anatomy of a blind groundmotion prediction test. In: Proceedings, 3rd international symposium on the effects of surface geology on seismic motion, 29 August–1 September 2006, Grenoble, FranceGoogle Scholar
  66. Riga E, Makra K, Pitilakis K (2016) Aggravation factors for seismic response of sedimentary basins: a code-oriented parametric study. Soil Dyn Earthq Eng 91:116–132.  https://doi.org/10.1016/j.soildyn.2016.09.048 CrossRefGoogle Scholar
  67. Roten D, Fäh D, Cornou C, Giardini D (2006) 2D resonances in Alpine valleys identified from ambient vibration wavefields. Geophys J Int 165:889–905.  https://doi.org/10.1111/j.1365-246X.2006.02935.x CrossRefGoogle Scholar
  68. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86:337–352Google Scholar
  69. Santucci de Magistris F, D’onofrio A, Evangelista L, Foti S, Maraschini M, Monaco P, Amoroso S, Totani G, Lanzo G, Pagliaroli A, Madiai C, Simoni G, Silvestri F (2013) Geotechnical characterization of the Aterno Valley for site response analysis. Rivista Italiana di Geotecnica, Anno XLVII 3:23–43. ISSN 0557-1405. Pàtron Editore, Bologna (Italy)Google Scholar
  70. Sboras S, Dourakopoulos JA, Mouzakiotis E, Dafnis P, Palantzas T, Karastathis VK, Voulgaris N, Tselentis GA (2017) Seismic hazard assessment for the protection of cultural heritage in Greece: methodological approaches for national and local scale assessment (pilot areas of Aighio, Kalamata and Heraklion). Ann Geophys, ISSN: 2037-416X, 60(4):S0440.  https://doi.org/10.4401/ag-7154
  71. Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Report No. UCB/EERC-72/12. Earthquake Engineering Research Center, University of California, Berkeley (California), December 1972Google Scholar
  72. Smerzini C, Paolucci R, Stupazzini M (2011) Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy. Bull Earthq Eng 9:2007–2029.  https://doi.org/10.1007/s10518-011-9289-8 CrossRefGoogle Scholar
  73. Storti F, Aldega L, Balsamo F, Corrado S, Del Monaco F, Di Paolo L, Mastalertz M, Monaco P, Tallini M (2013) Evidence of strong Quaternary earthquakes in the epicentral area of the April 6th 2009 L’Aquila seismic event from sediment paleofluidization and overconsolidation. J Geophys Res 118(7):3767–3784.  https://doi.org/10.1002/jgrb.50254 CrossRefGoogle Scholar
  74. Tallini M, Cavuoto G, Del Monaco F, Di Fiore V, Mancini M, Caielli G, Cavinato GP, De Franco R, Pelosi N, Rampolla A (2012) Seismic surveys integrated with geological data for in-depth investigation of Mt. Pettino active fault area (Western L’Aquila Basin). Ital J Geosci 131:389–402.  https://doi.org/10.3301/IJG.2012.10 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e VulcanologiaL’AquilaItaly
  2. 2.Consiglio Nazionale delle Ricerche-Istituto di Geologia Ambientale e GeoingegneriaMonterotondo, RomeItaly
  3. 3.Department of Civil, Architectural and Environmental EngineeringUniversity of L’AquilaL’AquilaItaly
  4. 4.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly

Personalised recommendations