Skip to main content
Log in

Historical intermediate-depth earthquakes in the southern Aegean Sea Benioff zone: modeling their anomalous macroseismic patterns with stochastic ground-motion simulations

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M = 7.7 Rhodes and 1935 M = 6.9 Crete earthquakes, the unique 1956 M = 6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M = 5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances > 100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abe K (1981) Magnitudes of large shallow earthquakes from 1904 to 1980. Phys Earth Plan Inter 27:72–93

    Article  Google Scholar 

  • Ambraseys NN (2001) Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophys J Int 145(2):471–487. https://doi.org/10.1046/j.0956-540X.2001.01396.x

    Article  Google Scholar 

  • Ambraseys NN (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, 968 pp

  • Ambraseys NN, Adams RD (1998) The Rhodes earthquake of 26 June 1926. J Seismol 2(3):267–292

    Article  Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74(5):1969–1993

    Google Scholar 

  • Bakun WU, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87(6):1502–1521

    Google Scholar 

  • Benetatos C, Kiratzi A, Papazachos C, Karakaisis G (2004) Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc. J Geodyn 37(2):253–296

    Article  Google Scholar 

  • Beresnev IA, Atkinson GM (1999) Generic finite-fault model for ground motion prediction in eastern North America. Bull Seismol Soc Am 89:608–625

    Google Scholar 

  • Boore DM (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99(6):3202–3216. https://doi.org/10.1785/0120090056

    Article  Google Scholar 

  • Boore DM (2010) Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100:1830–1835

    Article  Google Scholar 

  • Boore DM (2016) Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) generic site amplification for $$ \bar{V}_{S} (Z) = 760\;{\text{m/s}}. Bull Seismol Soc Am 106:316–320

    Article  Google Scholar 

  • Boore DM, Skarlatoudis AA, Margaris BN, Papazachos CB, Ventouzi C (2009) Along-arc and back-arc attenuation, site response, and source spectrum for the intermediate-depth 8 January 2006 M 6.7 Kythera, Greece, Earthquake. Bull Seismol Soc Am 99(4):2410–2434. https://doi.org/10.1785/0120080229

    Article  Google Scholar 

  • Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95(6):2081–2092

    Article  Google Scholar 

  • Brüstle A, Friederich W, Meier T, Gross C (2014) Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth 5(2):1027

    Article  Google Scholar 

  • Bureau Central International de Sismologie (B.C.I.S.): Monthly bulletins, Strasbourg

  • Caputo M, Panza GF, Postpischl D (1970) Deep structure of the Mediterranean basin. J Geophys Res 75(26):4919–4923

    Article  Google Scholar 

  • CEN, the European Committee for Standardization (2005) Eurocode 8: Design of structures for earthquake resistance—part 4: Silos, tanks and pipelines. European Standard EN 1998-4, Brussels, Belgium

  • Chen KH, Kennett BLN, Furumura T (2013) High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. J Geophys Res Solid Earth 118(2):665–680. https://doi.org/10.1002/jgrb.50071

    Article  Google Scholar 

  • Comninakis P, Papazachos B (1986) A catalogue of earthquakes in Greece and the surrounding area for the period 1901–1985 univ Thessaloniki geophys, Lab. Publ.

  • Critikos NA (1928) Le tremblement de terre de la mer de Crete du 26 juin 1926; étude macroséismique. Annales Oberv Natl Athenes 10:39–46

    Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini volcano. Geol Soc London Mem, 19:162 pp

  • Francalanci L, Vougioukalakis G, Perini G, Manetti P (2005) A West–East traverse along the magmatism of the South Aegean volcanic arc in the light of volcanological, chemical and isotope data. Dev Volcanol 7:65–111

    Article  Google Scholar 

  • Friederich W, Meier T (2008) Temporary seismic broadband network acquired data on hellenic subduction zone. Eos Trans Am Geophys Union 89(40):378. https://doi.org/10.1029/2008EO400002

    Article  Google Scholar 

  • Fukushima Y, Tanaka T (1990) A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan. Bull Seismol Soc Am 80:757–778

    Google Scholar 

  • Fytikas M, Innocenti F, Manetti P, Mazzuoli R, Pecerillo A, Villari L (1985) Tertiary to Quaternary evolution of the volcanism in the Aegean region. In: Dixon JF, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Blackwell Publ, Oxford, p 848

    Google Scholar 

  • Galanopoulos AG (1981) The damaging shocks and the earthquake potential of Greece. Ann Geol Pays Hellen 30:648–724

    Google Scholar 

  • Ganas A, Parsons T (2009) Three-dimensional model of Hellenic arc deformation and origin of the cretan uplift. J Geophys Res Solid Earth 114:1–14

    Article  Google Scholar 

  • Gusev A, Radulian M, Rizescu M, Panza GF (2002) Source scaling of intermediate-depth Vrancea earthquakes. Geophys J Int 151(3):879–889

    Article  Google Scholar 

  • Hatzfeld D, Besnard M, Makropoulos K, Voulgaris N, Kouskouna V, Hatzidimitriou P, Panagiotopoulos D, Karakaisis G, Deschamps A, Lyon-Caen H (1993) Subcrustal microearthquake seismicity and fault plane solutions beneath the Hellenic arc. J Geophys Res Solid Earth 98(B6):9861–9870

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, Earthquake. Bull Seismol Soc Am 71:2011–2038

    Google Scholar 

  • Jusseret S, Langohr C, Sintubin M (2013) Tracking earthquake archaeological evidence in Late Minoan IIIB (~ 1300–1200 BC) Crete (Greece): a proof of concept. Bull Seismol Soc Am 103(6):3026–3043

    Article  Google Scholar 

  • Karnik V (1968) Seismicity of the European Area, Parts I and II. Academia-J. Reidel, Praha-Dordrecht, p 1971

    Google Scholar 

  • Kennett BLN, Furumura T (2008) Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. Geophys J Int 172(1):363–382. https://doi.org/10.1111/j.1365-246X.2007.03647.x

    Article  Google Scholar 

  • Kiratzi AA, Papazachos CB (1995) Active deformation of the shallow part of the subducting lithospheric slab in the Southern Aegean. J Geodyn 19:65–78

    Article  Google Scholar 

  • Kkallas C, Papazachos K, Scordilis E, Margaris V (2013) Re-examining the stress field of the broader Southern Aegean subduction area using an updated focal mechanism database. Bull Geol Soc Greece 47(2):563–573. http://geolib.geo.auth.gr/index.php/bgsg/article/view/10658/10384

    Article  Google Scholar 

  • Kkallas C, Papazachos CB, Margaris BN, Boore D, Ventouzi C, Skarlatoudis A (2018) Stochastic strong ground motion simulation of the southern Aegean Sea Benioff zone intermediate-depth earthquakes. Bull Seismol Soc Am. https://pubs.geoscienceworld.org/ssa/bssa/articleabstract/525973/stochastic-strong-ground-motion-simulation-of-the?redirectedFrom=PDF

  • Klimis NS, Margaris BN, Koliopoulos PK (1999) Site-dependent amplification functions and response spectra in Greece. J Earthq Eng 3(02):237–270

    Google Scholar 

  • Klimis Ν, Margaris Β, Anastasiadis Α, Koliopoulos P, Kirtas Em (2006) Smoothed Hellenic rock site amplification factors. In: 5th Hellenic congress of geotechnical and geoenvironmental engineering, vol 2, pp 239–246, Xanthi, Greece (in Greek)

  • Knapmeyer M (1999) Geometry of the Aegean Benioff zones. Ann Geophys 42(1):29–38

    Google Scholar 

  • Koliopoulos PK, Margaris BN, Klimis NS (1998) Duration and energy characteristics of Greek strong motion records. J Earthq Eng 2(3):391–417. https://doi.org/10.1080/13632469809350328

    Article  Google Scholar 

  • Ktenidou O-J, Drouet S, Theodulidis N, Chaljub M, Arnaouti S, Cotton F (2012) Estimation of kappa (κ) for a sedimentary basin in Greece (EUROSEISTEST): Correlation to site characterization parameters. In: Proceedings of 15th world conference of earthquake engineering, Lisbon, Portugal, 24–28 September, 10 pp

  • Lemoine A, Douglas J, Cotton F (2012) Testing the applicability of correlations between topographic slope and VS30 for Europe. Bull Seismol Soc Am 102(6):2585–2599

    Article  Google Scholar 

  • LePichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Makropoulos KC, Drakopoulos JK, Latousakis JB (1989) A revised and extended earthquake catalogue for Greece since 1900. Geophys J Int 98(2):391–394

    Article  Google Scholar 

  • Margaris BN, Boore DM (1998) Determination of Δσ and κ0 from response spectra of large earthquakes in Greece. Bull Seismol Soc Am 88(1):170–182

    Google Scholar 

  • Margaris BN, Hatzidimitriou PM (2002) Source spectral scaling and stress release estimates using strong-motion records in Greece. Bull Seismol Soc Am 92(3):1040–1059

    Article  Google Scholar 

  • Margottini G (1982) Osservazioni su alcuni grandi terremoti con epicentro in oriente. Campo macrosismico in Italia del terremoto greco del 1903, Rep. CNEN-RT/AMB(82)3, Comit. Naz. Energ. Nucleare, Rome

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719

    Article  Google Scholar 

  • McKenzie DP (1970) Plate tectonics of the Mediterranean region. Nature 226(5242):239–243. https://doi.org/10.1038/226239a0

    Article  Google Scholar 

  • McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J R Astron Soc 55:217–254

    Article  Google Scholar 

  • Meier T, Dietrich K, Stöckhert B, Harjes HP (2004) One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys J Int 156(1):45–58. https://doi.org/10.1111/j.1365-246X.2004.02121.x

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. https://doi.org/10.1785/0120030207

    Article  Google Scholar 

  • Musson RMW, Grünthal G, Stucchi M (2009) The comparison of macroseismic intensity scales. J Seismol 14(2):413–428. https://doi.org/10.1007/s10950-009-9172-0

    Article  Google Scholar 

  • National Earthquake Hazards Reduction Program (1994) FEMA report 222A: Recommended provisions for seismic regulations for new buildings and other structures, Part 1: provisions. Building Seismic Safety Council, Washington D.C., p 290

    Google Scholar 

  • Okal EA, Synolakis CE, Uslu B, Kalligeris N, Voukouvalas E (2009) The 1956 earthquake and tsunami in Amorgos, Greece. Geophys J Int 178(3):1533–1554. https://doi.org/10.1111/j.1365-246X.2009.04237.x

    Article  Google Scholar 

  • Oliver J, Isacks B (1967) Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. J Geophys Res 72(16):4259–4275. https://doi.org/10.1029/JZ072i016p04259

    Article  Google Scholar 

  • Papadopoulos, GA, Ziazia M, Plessa A, Ganas A, Karastathis V, Melis N, Stavrakakis G (2002), Seismic anisotropy in the East Mediterranean Lithosphere: The Mw = 6.3 Karpathos Intermediate Depth Earthquake of 22 January 2002 in the Hellenic Arc. In: XXVII Gen Ass Eur Seism Soc, Genova

  • Papadopoulos G (2011) A seismic history of Crete. Ocelotos Publ, Athens, p 385

    Google Scholar 

  • Papadopoulos GA, Pavlides SB (1992) The large 1956 earthquake in the South Aegean: macroseismic field configuration, faulting, and neotectonics of Amorgos Island. Earth Planet Sci Lett 113(3):383–396

    Article  Google Scholar 

  • Papadopoulos I, Papazachos C, Savvaidis A, Theodoulidis N, Vallianatos F (2017) Seismic microzonation of the broader Chania basin area (Southern Greece) from the joint evaluation of ambient noise and earthquake recordings. Bull Earthq Eng 15(3):861–888

    Article  Google Scholar 

  • Papazachos BC (1990) Seismicity of the Aegean and surrounding area. Tectonophysics 178:287–308

    Article  Google Scholar 

  • Papazachos B (1996) Large seismic faults in the Hellenic arc. Ann Geofisica 36(5):891–903

    Google Scholar 

  • Papazachos CB (1999) Seismological and GPS evidence for the Aegean–Anatolia Interaction. Geophys Res Lett 26(17):2653–2656

    Article  Google Scholar 

  • Papazachos BC, Comninakis PE (1969) Geophysical features of the Greek island arc and eastern Mediterranean ridge. Com Ren Séances Conf Reunie Madrid 16(16):74–75

    Google Scholar 

  • Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean arc. Geophys. Res 76:8517–8533

    Article  Google Scholar 

  • Papazachos BC, Delibasis ND (1969) Tectonic stress field and seismic faulting in the area of Greece. Tectonophysics 7(3):231–255

    Article  Google Scholar 

  • Papazachos C, Nolet G (1997) P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. J Geophys Res B Solid Earth 102(B4):8349–8367

    Article  Google Scholar 

  • Papazachos BC, Papaioannou CA (1993) Long-term earthquake prediction in the Aegean area based on a time and magnitude predictable model. Pure appl Geophys 140(4):593–612

    Article  Google Scholar 

  • Papazachos C, Papaioannou C (1997) The macroseismic field of the Balkan area. J Seismol 1(2):181–201

    Article  Google Scholar 

  • Papazachos C, Papaioannou C (1998) Further information on the macroseismic field in the Balkan area. J Seismol 2(4):363–375

    Article  Google Scholar 

  • Papazachos B, Papazachou K (1989) The earthquakes of Greece—1st edition. Ziti Publ., Thessaloniki, 294 pp (in Greek)

  • Papazachos B, Papazachou K (2003) The earthquakes of Greece—2nd edition. Ziti Publ., Thessaloniki, 273 pp

  • Papazachos CB, Hatzidimitriou PM, Panagiotopoulos DG, Tsokas GN (1995) Tomography of the crust and upper mantle in southeast Europe. J Geophys Res 12:405–412

    Google Scholar 

  • Papazachos BC, Papaioannou CA, Papazachos CB, Savaidis AS (1997a) Atlas of isoseismal maps for strong shallow earthquakes in Greece and the surrounding area (426BC-1995), 4

  • Papazachos BC, Papaioannou Ch, Papazachos CB, Savvaidis AS (1997b) A data bank of macroseismic information for shallow earthquakes in the southern Balkan area (550BC-1995AD). In: 29th IASPEI General Assembly, Thessaloniki, 18–28 August, Abstracts Volume, 372p

  • Papazachos B, Papadimitriou E, Kiratzi A, Papazachos C, Louvari E (1998) Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications. Boll Geof Teor Appl 39(3):199–218

    Google Scholar 

  • Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000) The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319:275–300

    Article  Google Scholar 

  • Papazachos BC, Dimitriadis ST, Panagiotopoulos DG, Papazachos CB, Papadimitriou EE (2005) Deep structure and active tectonics of the southern Aegean volcanic arc. Dev Volcanol 7:47–64

    Article  Google Scholar 

  • Papazachos BC, Comninakis PE, Scordilis EM, Karakaisis GF, Papazachos CB (2010). A catalogue of earthquakes in the Mediterranean and surrounding area for the period 1901–2010, Publ. Geophys. Laboratory, University of Thessaloniki

  • Papazachos G, Papazachos C, Skarlatoudis A, Kkallas H, Lekkas E (2016) Modelling macroseismic observations for historical earthquakes: the cases of the M = 7.0, 1954 Sofades and M = 6.8, 1957 Velestino events (central Greece). J Seismol 20(1):151–165

    Article  Google Scholar 

  • Pavel F, Vacareanu R (2015) Kappa and regional attenuation for Vrancea (Romania) earthquakes. J Seismol 19:791–799

    Article  Google Scholar 

  • Pelekis PC, Athanasopoulos GA (2013) Seismic microzonation of Chania, Crete (Greece) based on SASW measurements and non-linear site response analyses. Soil Dyn Earthq Eng 53:145–159

    Article  Google Scholar 

  • Reilinger RE, McClusky SC, Qral MB, King RW, Toksoz MN, Barka AA, Kinik I, Lenk O, Sanli I (1997) Global positioning system measurements of present-day crustal movements in the Arabia–Africa–Eurasia plate collision zone. J Geophys Res B Solid Earth 102(B5):9983–9999

    Article  Google Scholar 

  • Richter CF (1958) Elementary seismology. Freeman, San Francisco, p 768

    Google Scholar 

  • Roumelioti Z, Kiratzi A, Margaris B, Chatzipetros A (2017) Simulation of strong ground motion on near-fault rock outcrop for engineering purposes: the case of the city of Xanthi (northern Greece). Bull Earthq Eng 15(1):25–49

    Article  Google Scholar 

  • Sarris A, Loupasakis C, Soupios P, Trigkas V, Vallianatos F (2010) Earthquake vulnerability and seismic risk assessment of urban areas in high seismic regions: application to Chania City, Crete Island, Greece. Nat Hazards 54(2):395–412

    Article  Google Scholar 

  • Savvaidis A, Margaris B, Theodoulidis N, Lekidis V, Karakostas C, Loupasakis C, Rozos D, Soupios P, Mangriotis M, Dikmen U, Tsangaratos P (2014) Geo-Characterization at selected accelerometric stations in Crete (Greece) and comparison of earthquake data recordings with EC8 elastic spectra. Open Geosci 6(1):88–103

    Article  Google Scholar 

  • Shebalin, NV, Kárnik V, Hadzievski D (1974) Catalogue of earthquakes 1901–1970, and atlas of isoseismal maps. UNDP/UNESCO Balkan Project, Skopje, 3

  • Sieberg A (1932) Die Erdbeben. In: Gutenberg B (ed) Handbuch der Geophysik 4, 93–94, Berlin

  • Skarlatoudis AA, Papazachos CB, Margaris BN, Papaioannou C, Ventouzi C, Vamvakaris D, Bruestle A, Meier T, Friederich W, Stavrakakis G, Taymaz T (2009) Combination of acceleration-sensor and broadband velocity-sensor recordings for attenuation studies: the case of the 8 January 2006 Kythera intermediate-depth earthquake. Bull Seismol Soc Am 99(2A):694–704

    Article  Google Scholar 

  • Skarlatoudis AA, Papazachos CB, Margaris BN, Ventouzi C, Kalogeras I (2013) Ground-motion prediction equations of intermediate-depth earthquakes in the Hellenic arc, Southern Aegean subduction area. Bull Seismol Soc Am 103(3):1952–1968. https://doi.org/10.1785/0120120265

    Article  Google Scholar 

  • Sokolov V, Bonjer KP, Oncescu M, Rizescu M (2005) Hard rock spectral models for intermediate-depth Vrancea, Romania, earthquakes. Bull Seismol Soc Am 95(5):1749–1765

    Article  Google Scholar 

  • Sørensen MB, Stromeyer D, Grünthal G (2010) A macroseismic intensity prediction equation for intermediate depth earthquakes in the Vrancea region, Romania. Soil Dyn Earthq Eng 30(11):1268–1278

    Article  Google Scholar 

  • Spakman W (1998) Upper mantle delay time tomography with an application to the collision zone of the Eurasian, African and Arabian plates. Ph.D. Thesis, Univ. of Utrecht, 53, 200 pp

  • Spakman W, Van der Lee S, Van der Hilst RD (1993) Travel-time tomography of the European–Mediterranean mantle down to 1400 km. Phys Earth Plant Int 79:3–74

    Article  Google Scholar 

  • Stewart JP, Klimis N, Savvaidis A, Theodoulidis N, Zargli E, Athanasopoulos G, Pelekis P, Mylonakis G, Margaris B (2014) Compilation of a local VS profile database and its application for inference of VS30 from geologic- and terrain-based proxies. Bull Seismol Soc Am 104(6):2827–2841. https://doi.org/10.1785/0120130331

    Article  Google Scholar 

  • Stiros S, Papageorgiou S, Kontogianni V, Psimoulis P (2006) Church repair swarms and earthquakes in Rhodes Island, Greece. J Seismol 10(4):527–537

    Article  Google Scholar 

  • Sun D, Miller MS, Piana Agostinetti N, Asimow PD, Li D (2014) High frequency seismic waves and slab structures beneath Italy, Earth Planet. Sci Lett 391:212–223. https://doi.org/10.1016/j.epsl.2014.01.034

    Article  Google Scholar 

  • Taymaz T, Jackson J, Westaway R (1990) Earthquake mechanisms in the Hellenic Trench near Crete. Geophys J Int 102(3):695–731

    Article  Google Scholar 

  • Theodulidis NP, Papazachos BC (1992) Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, peak horizontal acceleration, velocity and displacement. Soil Dyn Earthq Eng 11(7):387–402

    Article  Google Scholar 

  • Tsampas AD, Scordilis EM, Papazachos CB, Karakaisis GF (2016) Global-magnitude scaling relations for intermediate-depth and deep-focus earthquakes. Bull Seismol Soc Am. https://doi.org/10.1785/0120150201

    Article  Google Scholar 

  • Tselentis GA, Danciu L (2008) Empirical relationships between modified Mercalli intensity and engineering ground-motion parameters in Greece. Bull Seismol Soc Am 98(4):1863–1875. https://doi.org/10.1785/0120070172

    Article  Google Scholar 

  • Vacareanu R, Radulian M, Iancovici M, Pavel F, Neagu C (2015) Fore-arc and back-arc ground motion prediction model for Vrancea intermediate depth seismic source. J Earthq Eng 19(3):535–562

    Article  Google Scholar 

  • Ventouzi C, Papazachos CB, Papaioannou C, Hatzidimitriou P, The EGELADOS Working Group (2015) Qp and Qs attenuation models of the southern Aegean subduction area. Paper presented at 15th European conference on earthquake engineering and 34th General Assembly of the European Seismological Commission, Istanbul, Turkey

  • Wald DJ, Allen TI (2007) topographic slope as a proxy for seismic site conditions and amplification. Bull Seismol Soc Am 97(5):1379–1395. https://doi.org/10.1785/0120060267

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq Spectra 15(3):557–564

    Article  Google Scholar 

  • Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79(47):579

    Article  Google Scholar 

  • Yolsal-Çevikbilen S, Taymaz T (2012) Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics 536–537:61–100. https://doi.org/10.1016/j.tecto.2012.02.019

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. John Douglas and two anonymous reviewers for their constructive and helpful comments, which helped to improve the manuscript. This work has been partly supported by the 3D-SEGMENTS project of the ARISTEIA-I call funded by EC European Social Fund and the Greek Secretariat of Research and Technology. C.P. and M.S. also acknowledge the partial support from the HELPOS (MIS 5002697) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Kkallas.

Ethics declarations

The intermediate-depth earthquake data used in Fig. 12 are available at http://geophysics.geo.auth.gr/ss/ (last accessed December 2017). The EXSIM_DMB code used for the simulations is available at http://www.daveboore.com/software_online.html (last accessed December 2017). Macroseismic intensities of historical events were collected from the database of macroseismic information for the Aegean area (Papazachos et al. 1997b), available upon request, as well as from the online bulletin of the International Seismological Center (http://www.isc.ac.uk/) and the online archives of the Bureau Central Sismologique Français (http://www.franceseisme.fr/). Broadband velocity-sensor data were collected from permanent Greek seismological networks, operated by the Hellenic Unified Seismological Network (HUSN), available to the public upon request from individual HUSN members. Strong motion data employed in this work were collected from the permanent networks operated by the Institute of Engineering Seismology and Earthquake Engineering (ITSAK) and the National Observatory of Athens, which are also available upon request. Several plots were made using the Generic Mapping Tools version 4 (Wessel and Smith 1998; http://www.soest.hawaii.edu/gmt/, last accessed December 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kkallas, C., Papazachos, C.B., Boore, D. et al. Historical intermediate-depth earthquakes in the southern Aegean Sea Benioff zone: modeling their anomalous macroseismic patterns with stochastic ground-motion simulations. Bull Earthquake Eng 16, 5121–5150 (2018). https://doi.org/10.1007/s10518-018-0342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0342-8

Keywords

Navigation