Skip to main content
Log in

Forming new steel-framed openings in load-bearing masonry walls: design methods and nonlinear finite element simulations

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Forming new openings in load-bearing masonry panels is a frequent activity in engineering practice, often accomplished through very simplified design methods despite the complexity of the mechanical behaviour of the masonry and its interaction with the frame. Scientific literature and building codes provide little information. The Italian building code and the local regulation of Tuscany give some dimensional prescriptions and basic guidelines. Different simplified design methods in the literature lead to wide-ranging results. Here, the problem is approached through nonlinear finite-element analyses. The masonry is modelled through a rotating crack constitutive model, and the interaction between steel-frame and masonry, through cohesive-frictional interface elements. Sensitivity analyses are carried out by varying geometrical and mechanical parameters and the responses are compared in terms of capacity curves. The influence of the steel-profile cross-section, the position of the opening within the wall, and the degree of connection between the steel uprights and the masonry are evaluated. The study is extended to three-dimensional structures to determine the impact of the local operation of the opening formation on global behaviour. Based on the results obtained, some indications and guidelines are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Bartoli G, Betti M, Biagini P, Borghini A, Ciavattone A, Girardi M, Lancioni G, Marra AM, Ortolani B, Pintucchi B, Salvatori L (2016) Epistemic uncertainties in structural modeling: a blind benchmark for seismic assessment of slender masonry towers. ASCE J Perform Constr Facil 31(5):1–18

    Google Scholar 

  • Battaglia R (2014) Rinforzi e/o introduzione di aperture - metodi di calcolo. Training course “Impariamo a ricostruire”, University of Ferrara

  • Berti M, Salvatori L, Spinelli P (2017) Unreinforced masonry walls with irregular opening layouts: reliability of equivalent-frame modelling for seismic vulnerability assessment. Bull Earthq Eng 15:1213–1239

    Article  Google Scholar 

  • Blasi C, Foraboschi P (1994) Analytical approach to collapse mechanisms of circular masonry arch. ASCE J Struct Eng 120(8):2288–2309

    Article  Google Scholar 

  • Calderoni B, Cordasco EA, Lenza P (2010) Structural behaviour of masonry spandrels of URM buildings subjected to horizontal loading: experimental analysis. Ing Sismica 27(4):49–70

    Google Scholar 

  • Chiarugi A, Spinelli P (1991) Acciaio e riuso edilizio: il punto di vista strutturale. L’acciaio nel recupero edilizio e nel restauro—Repertorio delle soluzioni tecniche, Consorzio CREA, pp 39–48 (in Italian)

  • Ciavattini C (2012) Apertura vani in pareti portanti in zona sismica, Grafill (in Italian)

  • C.S.LL.PP (2008) Nuove Norme Tecniche per le Costruzioni. D.M. 14/02/2008 (in Italian)

  • Diana TNO (2008) DIANA-finite element analysis-user’s manual

  • Dolce M (1991) Schematizzazione e modellazione degli edifici in muratura soggetti ad azioni sismiche. L’Industria delle Costruzioni 242(12):44–57 (in Italian)

    Google Scholar 

  • Foraboschi P (2016a) The central role played by structural design in enabling the construction of buildings that advanced and revolutionized architecture. Constr Build Mater 114:956–976

    Article  Google Scholar 

  • Foraboschi P (2016b) Versatility of steel in correcting construction deficiencies and in seismic retrofitting of RC buildings. J Build Eng 8:107–122

    Article  Google Scholar 

  • Foraboschi P (2017) Specific structural mechanics that underpinned the construction of Venice and dictated Venetian architecture. Eng Fail Anal 78:169–195

    Article  Google Scholar 

  • Foraboschi P, Vanin A (2013) Non-linear static analysis of masonry buildings based on a strut-and-tie modeling. Soil Dyn Earthq Eng 55:44–58

    Article  Google Scholar 

  • Gori L (2014) Il ruolo del Genio Civile nelle attività di protezione e di conservazione del costruito storico e degli edifici monumentali. In: Safe monuments. Collegio degli Ingegneri della Toscana (in Italian)

  • Jirasek M, Zimmermann T (1994) Analysis of rotating crack model. J Eng Mech 124(8):842–851

    Article  Google Scholar 

  • Lagomarsino S, Cattari S (2011) La realizzazione di nuove aperture nelle costruzioni in muratura esistenti. Training course of Ordine degli Ingegneri della Provincia di Bologna. March 4–5, Bologna, Italy (in Italian)

  • Laurenço PB, Senthivel R (2009) Finite element modelling of deformation characteristics of historical stone masonry shear walls. Eng Struct 31(9):1930–1943

    Article  Google Scholar 

  • Margiacchi F, Salvatori L, Orlando M, De Stefano M, Spinelli P (2016) Seismic response of masonry-infilled steel frames via multi-scale finite-element analyses. Bull Earthq Eng 14(12):3529–3546

    Article  Google Scholar 

  • Marra AM, Salvatori L, Spinelli P, Bartoli G (2016) Incremental dynamic and nonlinear static analyses for seismic assessment of medieval masonry towers. ASCE J Perform Constr Facil 31(4):1–10

    Google Scholar 

  • M.II.TT (2009) Circolare 617/2009. Istruzioni per l’Applicazione delle Nuove Norme Tecniche di cui al D.M. 14/02/2008. G.U. n. 47 26/02/2009, S.O. n. 27 (in Italian)

  • Orlando M, Salvatori L, Spinelli P, De Stefano M (2016) Displacement capacity of masonry piers: parametric numerical analyses versus international building codes. Bull Earthq Eng 14:2259–2271

    Article  Google Scholar 

  • Pugi F (2012) Aperture e cerchiature in murature portanti con telai in acciaio e in calcestruzzo armato, Alinea (in Italian)

  • R.T (2010) Comitato Tecnico Scientifico in materia di rischio sismico. Orientamenti interpretativi in merito a interventi locali o di riparazione in edifici esistenti, Regione Toscana (in Italian)

  • Salvatori L, Spinelli P (2018) Continuum-discrete multiscale model for in-plane mechanical modeling of masonry panels. J Multiscale Model 9(2):1–25. https://doi.org/10.1142/S1756973718400048

    Google Scholar 

  • Salvatori L, Marra AM, Bartoli G, Spinelli P (2015) Probabilistic seismic performance of masonry towers: general procedure and a simplified implementation. Eng Struct 94:82–95

    Article  Google Scholar 

  • Salvatori L, Marra AM, Bartoli G, Spinelli P (2017) Role of correlation between mechanical parameters in the probabilistic seismic vulnerability of historical masonry towers. Int J Mason Res Innov 2(2–3):134–149

    Article  Google Scholar 

  • Vignoli A, Chiostrini S (1999) Caratterizzazione meccanica delle murature in pietra della Lunigiana e della Garfagnana. DICEA, Firenze (in Italian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Salvatori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billi, L., Laudicina, F., Salvatori, L. et al. Forming new steel-framed openings in load-bearing masonry walls: design methods and nonlinear finite element simulations. Bull Earthquake Eng 17, 2647–2670 (2019). https://doi.org/10.1007/s10518-018-00538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-00538-4

Keywords

Navigation