Skip to main content
Log in

REASSESS V2.0: software for single- and multi-site probabilistic seismic hazard analysis

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Probabilistic seismic hazard analysis (PSHA) is generally recognized as the rational method to quantify the seismic threat. Classical formulation of PSHA goes back to the second half of the twentieth century, but its implementation can still be demanding for engineers dealing with practical applications. Moreover, in the last years, a number of developments of PSHA have been introduced; e.g., vector-valued and advanced ground motion intensity measure (IM) hazard, the inclusion of the effect of aftershocks in single-site hazard assessment, and multi-site analysis requiring the characterization of random fields of cross-correlated IMs. Although software to carry out PSHA has been available since quite some time, generally, it does not feature a user-friendly interface and does not embed most of the recent methodologies relevant from the earthquake engineering perspective. These are the main motivations behind the development of the practice-oriented software presented herein, namely REgionAl, Single-SitE and Scenario-based Seismic hazard analysis (REASSESS V2.0). In the paper, the seismic hazard assessments REASSESS enables are discussed, along with the implemented algorithms and the models/databases embedded in this version of the software. Illustrative applications exploit the potential of the tool, which is available at http://wpage.unina.it/iuniervo/doc_en/REASSESS.htm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An early release of REASSESS (V1.0) was introduced in Iervolino et al. (2016a).

  2. These GMPEs are of the type in Eq. (5), then the shortcuts discussed in Sects. 2.3 and 4.1 apply. Also note that although the Ambraseys et al. (1996) GMPEs dates more than 20 years ago, it has been considered because it is the one the current official Italian hazard model is based on (Stucchi et al. 2011).

  3. The depth of the top of the rupture is assumed to be equal to 5 km for all events of magnitude less than 6.5 and one kilometer for events of larger magnitude, following the practice of the U.S. Geological Survey; however, this constraint is not strictly needed and could be relaxed in updated versions of REASSESS.

References

  • Aki K, Richards P (1980) Quantitative seismology: theory and methods. Freeman, San Francisco

    Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81:195–206

    Article  Google Scholar 

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400

    Article  Google Scholar 

  • Baker JW (2007) Probabilistic structural response assessment using vector-valued intensity measures. Earthq Eng Struct Dyn 36:1861–1883

    Article  Google Scholar 

  • Baker JW, Cornell CA (2006a) Spectral shape, epsilon and record selection. Earthq Eng Struct Dyn 35:1077–1095

    Article  Google Scholar 

  • Baker JW, Cornell CA (2006b) Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. PEER Technical Report, Pacific Earthquake Engineering Research Center, Berkeley, CA, USA

  • Baker JW, Jayaram N (2008) Correlation of spectral acceleration values from NGA ground motion models. Earthq Spectra 24:299–317

    Article  Google Scholar 

  • Barani S, Spallarossa D, Bazzurro P (2009) Disaggregation of probabilistic ground-motion hazard in Italy. Bull Seismol Soc Am 99:2638–2661

    Article  Google Scholar 

  • Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89:501–520

    Google Scholar 

  • Bazzurro P, Cornell CA (2002) Vector-valued probabilistic seismic hazard analysis (VPSHA). In: Proceedings of the 7th US national conference on earthquake engineering, Boston, MA, USA

  • Bender B, Perkins DM (1987) Seisrisk III: a computer program for seismic hazard estimation. US Geol Surv Bull 1772. https://doi.org/10.3133/b1772

  • Bianchini M, Diotallevi P, Baker JW (2009) Prediction of inelastic structural response using an average of spectral accelerations. In: Proceedings of the 10th international conference on structural safety and reliability (ICOSSAR 09), Osaka, Japan

  • Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9(6):1899–1920

    Article  Google Scholar 

  • Bojórquez E, Iervolino I (2011) Spectral shape proxies and nonlinear structural response. Soil Dyn Earthq Eng 31(7):996–1008

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground-motion prediction equations. Bull Earthq Eng 1:171–203

    Article  Google Scholar 

  • Boyd OS (2012) Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses. Bull Seismol Soc Am 102:909–917

    Article  Google Scholar 

  • Bradley BA (2012) Empirical correlations between peak ground velocity and spectrum-based intensity measures. Earthq Spectra 28:17–35

    Article  Google Scholar 

  • Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13:1587–1612

    Article  Google Scholar 

  • Chioccarelli E, Cito P, Iervolino I (2018) Disaggregation of sequence-based seismic hazard. In: Proceedings of the 16th European conference on earthquake engineering (16ECEE), Thessaloniki, Greece

  • Convertito V, Emolo A, Zollo A (2006) Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilistic-deterministic method. Bull Seismol Soc Am 96:377–391

    Article  Google Scholar 

  • Cordova PP, Deierlein GG, Mehanny SS, Cornell CA (2000) Development of a two-parameter seismic intensity measure and probabilistic assessment procedure. In: Proceedings of the second US-Japan workshop on performance-based earthquake engineering methodology for reinforced concrete building structures, Sapporo, Hokkaido, Japan

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Cornell CA, Krawinkler H (2000) Progress and challenges in seismic performance assessment. PEER Center News 3(2):1–3

    Google Scholar 

  • Danciu L, Monelli D, Pagani M, Wiemer S (2010) GEM1 hazard: review of PSHA software. GEM Technical Report 2010-2, GEM Foundation, Pavia

  • Douglas J (2014) Fifty years of ground-motion models. In: Proceedings of 2nd European conference on earthquake engineering and seismology (2ECEES), Istanbul, Turkey

  • Eberhart-Phillips D (1998) Aftershocks sequence parameters in New Zeland. Bull Seismol Soc Am 88(4):1095–1097

    Google Scholar 

  • Eguchi RT (1991) Seismic hazard input for lifeline systems. Struct Saf 10:193–198

    Article  Google Scholar 

  • El-Hussain I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-saifi M, Kuleli S (2012) Probabilistic seismic hazard maps for Sultanate of Oman. Nat Haz 64:173–210

    Article  Google Scholar 

  • Esposito S, Iervolino I (2012) Spatial correlation of spectral acceleration in European data. Bull Seismol Soc Am 102(6):2781–2788

    Article  Google Scholar 

  • Eurocode 8 (2004). Design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings, EN 1998-1. European Committee for Standardization (CEN). Bruxelles, Belgium

  • Field EH, Jordan TH, Cornell CA (2003) OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seismol Res Lett 74(4):406–419

    Article  Google Scholar 

  • Fox MJ, Stafford PJ, Sullivan TJ (2016) Seismic hazard disaggregation in performance-based earthquake engineering: occurrence or exceedance? Earthq Eng Struct Dyn 45:835–842

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Giardini D, Danciu L, Erdik M, Sesetyan K, Tumsa MBD, Akkar S, Gulen L, Zare M (2018) Seismic hazard map of Middle East. Bull Earth Eng 16(8):3567–3570

    Article  Google Scholar 

  • Giorgio M, Iervolino I (2016) On multisite probabilistic seismic hazard analysis. Bull Seismol Soc Am 106(3):1223–1234

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):1985–1988

    Google Scholar 

  • Iervolino I (2016) Soil-invariant seismic hazard and disaggregation. Bull Seismol Soc Am 106(4):1900–1907

    Article  Google Scholar 

  • Iervolino I, Giorgio M, Galasso C, Manfredi G (2010) Conditional hazard maps for secondary intensity measures. Bull Seismol Soc Am 100:3312–3319

    Article  Google Scholar 

  • Iervolino I, Chioccarelli E, Convertito V (2011) Engineering design earthquakes from multimodal hazard disaggregation. Soil Dyn Earthq Eng 31:1212–1231

    Article  Google Scholar 

  • Iervolino I, Giorgio M, Polidoro B (2014) Sequence-based probabilistic seismic hazard analysis. Bull Seismol Soc Am 104(2):1006–1012

    Article  Google Scholar 

  • Iervolino I, Chioccarelli E, Cito P (2016a) REASSESS V1.0: A computationally-efficient software for probabilistic seismic hazard analysis. In: Proceedings of the 7th European congress on computational methods in applied sciences and engineering (ECCOMAS), Crete, Greece

  • Iervolino I, Baltzopoulos G, Chioccarelli E (2016b) Case study: definition of design seismic actions in near-source conditions for an Italian site. Deliverable D9, DPC-Reluis 2015—RS2 Project—numerical simulations of earthquakes and near source effects, Rete dei Laboratori Universitari di Ingegneria Sismica, Naples, Italy

  • Iervolino I, Chioccarelli E, Giorgio M (2018) Aftershocks’ effect on structural design actions in Italy. Bull Seismol Soc Am 108(4):2209–2220

    Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Lin T, Harmsen SC, Baker JW, Luco N (2013) Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models. Bull Seismol Soc Am 103:1103–1116

    Article  Google Scholar 

  • Lolli B, Gasperini P (2003) Aftershocks hazard in Italy part I: estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence. J Seismol 7(2):235–257

    Article  Google Scholar 

  • Loth C, Baker JW (2013) A spatial cross-correlation model of spectral accelerations at multiple periods. Earthq Eng Struct Dyn 42(3):397–417

    Article  Google Scholar 

  • Mai PM, Spudich P, Boatwright J (2005) Hypocenter locations in finite-source rupture models. Bull Seismol Soc Am 95(3):965–980

    Article  Google Scholar 

  • Markhvida M, Ceferino L, Baker JW (2018) Modeling spatially correlated spectral accelerations at multiple periods using principal component analysis and geostatistics. Earthq Eng Struct Dyn 47(5):1107–1123

    Article  Google Scholar 

  • Marzocchi W, Taroni M (2014) Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull Seismol Soc Am 104(4):1838–1845

    Article  Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis. US Geological Survey Open-File Rept: 76–67. https://doi.org/10.3133/ofr7667

  • McGuire RK (1995) Probabilistic seismic hazard analysis and design earthquakes: closing the loop. Bull Seismol Soc Am 85(5):1275–1284

    Google Scholar 

  • McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland, CA

    Google Scholar 

  • Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba S, Vannucci G, Boschi E (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450:85–108

    Article  Google Scholar 

  • Montaldo V, Faccioli E, Zonno G, Akinci A, Malagnini L (2005) Threatment of ground motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9(3):295–316

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS (2012) Probabilistic seismic hazard assessment of India. Seismol Res Lett 83(1):135–149

    Article  Google Scholar 

  • Ordaz M, Martinelli F, D’Amico V, Meletti C (2013) CRISIS2008: a flexible tool to perform probabilistic seismic hazard assessment. Seismol Res Lett 84(3):495–504

    Article  Google Scholar 

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V et al (2014) OpenQuake-engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702

    Article  Google Scholar 

  • Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Science 243:1173–1175

    Article  Google Scholar 

  • Reasenberg PA, Jones LM (1994) Earthquake aftershocks: update. Science 265:1251–1252

    Article  Google Scholar 

  • Reiter L (1990) Earthquake hazard analysis: issues and insights. Columbia University Press, New York, NY

    Google Scholar 

  • Scherbaum F, Schmedes J, Cotton F (2004) On the conversion of source-to-site distance measures for extended earthquake source models. Bull Seismol Soc Am 94(3):1053–1069

    Article  Google Scholar 

  • Stafford PJ, Rodriguez-Marek A, Edwards B, Kruiver PP, Bommer JJ (2017) Scenario dependence of linear site-effect factors for short-period response spectral ordinates. Bull Seismol Soc Am 107(6):2859–2872

    Article  Google Scholar 

  • Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101(4):1885–1911

    Article  Google Scholar 

  • Ullah S, Bindi D, Pilz M, Danciu L, Weatherill G, Zuccolo E, Ischuk A, Mikhailova NN, Abdrakhma-tov K, Parolai S (2015) Probabilistic seismic hazard assessment for Central Asia. Ann Geophys 58(1):S0103

    Google Scholar 

  • Utsu T (1970) Aftershocks and earthquake statistics (1): some parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ Ser 7 Geophys 3:129–195

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Woessner J, Laurentiu D, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Article  Google Scholar 

  • Yeo GL, Cornell CA (2009) A probabilistic framework for quantification of aftershock ground-motion hazard in California: methodology and parametric study. Earthq Eng Struct Dyn 38:45–60

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was developed within the AXA-DiSt (Dipartimento di Strutture per l’Ingegneria e l’Architettura, Universita` degli Studi di Napoli Federico II) 2014–2017 research program, funded by AXA-Matrix Risk Consultants, Milan, Italy. The H2020-MSCA-RISE-2015 research project EXCHANGE-Risk (Grant Agreement No. 691213) and ReLUIS (Rete dei Laboratori Universitari di Ingegneria Sismica) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Chioccarelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chioccarelli, E., Cito, P., Iervolino, I. et al. REASSESS V2.0: software for single- and multi-site probabilistic seismic hazard analysis. Bull Earthquake Eng 17, 1769–1793 (2019). https://doi.org/10.1007/s10518-018-00531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-00531-x

Keywords

Navigation