Significance of directivity effects during the 2011 Lorca earthquake in Spain

Abstract

The May 11th 2011, Lorca earthquake in Southeastern Spain was a moderate magnitude event (Mw 5.1) yet it caused nine fatalities, more than 300 injuries and more than 462 million euros in economic loses. Peak ground accelerations as well as response spectral ordinates far exceed expected values from various ground motion prediction models. In particular, spectral ordinates computed from recorded ground motions significantly exceed those in current Spanish probabilistic seismic hazard models, as well as those in the Spanish and European building codes. The objective of this paper is to assess directivity effects on ground motions recorded during the 2011 Lorca earthquake, and to evaluate the significance of these effects in earthquake resistant design on moderate seismic regions. In the first part of this paper, we study the likelihood of the presence of a directivity pulse, by conducting a comparison of different parameters of recorded ground motions to analytical pulses. In the second part, we relate the recorded ground motion and its inelastic displacement spectra to some recent statistical models that try to capture the displacement demand features of earthquakes presenting directivity-pulse characteristics. It is shown that simple analytical pulses are capable of reproducing very well pulse-type near-fault ground motions recorded during the event. It is concluded that directivity effects played a major role in the large impact caused by this relatively small event. Furthermore, directivity effects which are typically ignored, both in probabilistic seismic hazard analysis and in most building codes, may lead to important underestimations of ground motions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Abrahamson NA (2000) Effects of rupture directivity on probabilistic seismic hazard analysis. In: Proceedings of the 6th international conference on seismic zonation, vol 1. Palm Springs, pp 151–156

  2. Akkar SD, Yazgan U, Gulkan P (2004) Deformation limits for simple non-degrading Systems subjected to near-fault ground motions. In: Proceedings 13th world conference on earthquake engineering, Vancouver, Canada

  3. Alavi B, Krawinkler H (2001) Effects of near-fault ground motions on frame structures. Technical Report 138. John A. Blume Earthquake Engineering Center, Stanford

    Google Scholar 

  4. Alguacil G, Vidal F, Navarro M, García-Jerez A, Pérez-Muelas J (2014) Characterization of earthquake shaking severity in the town of Lorca during the May 11, 2011 event. Bull Earthq Eng 12(5):1889–1908

    Article  Google Scholar 

  5. Alonso-Rodríguez A, Miranda E (2015) Assessment of building behavior under near-fault pulse-like ground motions through simplified models. Soil Dyn Earthq Eng 79:45–58

    Article  Google Scholar 

  6. Alvarez-Cabal R, Diaz-Pavón E, Rodríguez-Escribano R (2013) El Terremoto de Lorca, Efectos en los Edificios, Consorcio de Compensación de Seguros, Ministerio de Economía y Competitividad, Madrid, Spain (in Spanish)

  7. Anderson JC, Bertero VV (1987) Uncertainties in establishing design earthquakes. J Struct Eng 113(8):1709–1724

    Article  Google Scholar 

  8. ASCE/SEI Seismic Rehabilitation Standards Committee (2007) Seismic rehabilitation of existing buildings (ASCE/SEI 41-06). American Society of Civil Engineers, Reston

    Google Scholar 

  9. Baez JI, Miranda E (2000) Amplification factors to estimate inelastic displacement demands for the design of structures in the near field. In: Proceedings of 12th world conference on earthquake engineering, Auckland, NZ, 1561

  10. Baker JW (2007) Quantitative classification of near-fault ground motions using wavelet analysis. Bull Seismol Soc Am 97(5):1486–1501

    Article  Google Scholar 

  11. Baker JW, Cornell CA (2006) Which spectral acceleration are you using? Earthq Spectra 22(2):293–312

    Article  Google Scholar 

  12. Benito-Oterino B, Rivas-Medina A, Gaspar-Escribano JM, Murphy P (2012) El terremoto de Lorca (2011) en el contexto de la peligrosidad y el riesgo sísmico en Murcia. Física de la Tierra 24:255–287 (in Spanish)

    Google Scholar 

  13. Bertero VV, Mahin SA, Herrera RA (1978) Aseismic design implications of near-fault San Fernando earthquake records. Earthq Eng Struct Dyn 6(1):31–42

    Article  Google Scholar 

  14. Blazquez-Martinez R, Rodriguez-Estrella T, Ibargüen-Soler J, Martinez-Pagan P, Navarro-Bernal M, Trigueros-Tornero E, Alhama-Manteca I, Tomas-Espin A, Parra-Costa C, Garcia-Ayllon S, Alcaraz-Aparicio M, Hausen-Vargas M, (2014) Estudio de Microzonacion Sismica de Lorca. Universidad Politecnica de Cartagena – Consejeria de Fomento, Obras Publicas y Ordenacion del Territorio (Comunidad Autonoma Region de Murcia). http://portaleslr.carm.es/documents/13454/214474/DOC_MEMORIA_MICROZONACION_SISMICA_LORCA.pdf/201e2c4d-26a7-4dab-92a2-986f73292e41. Accessed Nov 2017 (in Spanish)

  15. Boore D (2010) Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100(4):1830–1835

    Article  Google Scholar 

  16. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24(1):99–138

    Article  Google Scholar 

  17. Boore DM, Watson-Lamprey J, Abrahamson NA (2006) Orientation-Independent measures of ground motion. Bull Seismol Soc Am 96(4A):1502–1511

    Article  Google Scholar 

  18. Bradley BA, Quigley MC, Van Dissen RJ, Litchfield NJ (2014) Ground motion and seismic source aspects of the canterbury earthquake sequence. Earthq Spectra 30(1):1–15

    Article  Google Scholar 

  19. Cabañas L, Alcalde JM, Carreño E, Bravo JB (2013) Characteristics of observed strong ground motion accelerograms from the 2011 Lorca (Spain) earthquake. Bull Earthq Eng 12:1909–1932. https://doi.org/10.1007/s10518-013-9501-0

    Article  Google Scholar 

  20. Cabañas-Rodriguez L, Carreño-Herrero E, Izquierdo-Alvarez A, Martinez-Solares JM, Capote-Villar R, Martinez-Diaz J, Benito-Oterino B, Gaspar-Escribano J, Garcia-Mayordomo J, Perez-Lopez R, Rodriguez-Pascua MA, Murphy-Corella P (2011) Informe del Sismo de Lorca del 11 de mayo de 2011. Instituto Geografico Nacional. Ministerio de Fomento. Madrid, Spain. http://www.ign.es/ign/resources/sismologia/Lorca.pdf. Accessed Nov 2016 (in Spanish)

  21. Chioccarelli E, Iervolino I (2010) Near-source seismic demand and pulse-like records: a discussion for L’Aquila earthquake. Earthq Eng Struct Dyn 39(2):1039–1062

    Google Scholar 

  22. García-Mayordomo J, Gaspar-Escribano JM, Benito B (2007) Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard. J Seismol 11(4):453–471

    Article  Google Scholar 

  23. Gaspar-Escribano JM, Benito B, García-Mayordomo J (2008) Hazard-consistent response spectra in the Region of Murcia (Southeast Spain): comparison to earthquake-resistant provisions. Bull Earthq Eng 6(2):179–196

    Article  Google Scholar 

  24. González PJ, Tiampo KF, Palano M, Cannavó F, Fernández J (2012) The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat Geosci 5(11):821–825

    Article  Google Scholar 

  25. Hall JJ, Heaton TH, Halling MW, Wald DJ (1995) Near-source ground-motion and its effects in flexible buildings. Earthq Spectra 13(4):569–605

    Article  Google Scholar 

  26. Iervolino I, Chioccarelli E, Baltzopoulos G (2012) Inelastic displacement ratio of near source pulselike ground motions. Earthq Eng Struct Dyn 41:2351–2357

    Google Scholar 

  27. Iwan WD (1997) Drift spectrum: measure of demand for earthquake ground motions. J Struct Eng 132(4):397–404

    Article  Google Scholar 

  28. Iwan WD, Huang CT, Guyader AC (1998) Evaluation of the effects of near-source ground motions. Final Report. California Institute of Technology, Pasadena

    Google Scholar 

  29. Lopez-Comino JA, Mancilla F, Morales J, Stich D (2012) Rupture directivity of the 2011, Mw 5.2 Lorca earthquake (Spain). Geophys Res Lett 39(3):L03301. https://doi.org/10.1029/2011GL050498

    Article  Google Scholar 

  30. Makris N, Black CJ (2004) Evaluation of peak ground velocity as a “good” intensity measure for near-source ground motions. J Eng Mech 130(9):1032–1044

    Article  Google Scholar 

  31. Martínez-Díaz JJ, Álvarez-Gómez JA, García-Mayordomo J, Insua-Arévalo JM, Martín-González F, Rodríguez-Peces MJ (2012a) Interpretación tectónica de la fuente del terremoto de Lorca de 2011 (MW 5, 2) y sus efectos superficiales. Boletín Geológico y Minero 123(4):441–458 (in Spanish)

    Google Scholar 

  32. Martínez-Díaz JJ, Bejar-Pizarro M, Álvarez-Gómez JA, Mancilla FDL, Stich D, Herrera G, Morales J (2012b) Tectonic and seismic implications of an intersegment rupture: the damaging May 11th 2011 Mw 5.2 Lorca, Spain, earthquake. Tectonophysics 546:28–37

    Article  Google Scholar 

  33. Martinez-Solares JM, Cantavella-Nadal JV, Cabañas-Rodríguez L, Valero-Zornosa JF (2012) El terremoto de Lorca de 11 de mayo de 2011 y la sismicidad de la región. Física de la Tierra 24:17–40 (in Spanish)

    Google Scholar 

  34. Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93(3):1099–1131

    Article  Google Scholar 

  35. Moratto L, Saraò A, Vuan A, Mucciarelli M, Jimenez M, Garcia Fernandez M (2017) The 2011 MW 5.2 Lorca earthquake as a case study to investigate the ground motion variability related to the source model. Bull Earthq Eng 15:3463–3482

    Article  Google Scholar 

  36. Pro C, Buforn E, Cesca S Sanz, de Galdeano C, Udías A (2014) Rupture process of the Lorca (southeast Spain) 11 May 2011 (Mw = 5.1) earthquake. J Seismol 18:481–495

    Google Scholar 

  37. Rueda J, Dreger D, Blanco RMG, Mezcua J (2014) Directivity detection and source properties of the 11 May 2011 Mw 5.2 Lorca, Spain, earthquake. Bull Seismol Soc Am 104(4):1735–1749

    Article  Google Scholar 

  38. Rueda-Nuñez J, Mezcua-Rodríguez J, García-Blanco RM (2012) Directividad de la fuente sísmica en el terremoto de Lorca del 11 de mayo de 2011. Física de la Tierra 24:83–111 (in Spanish)

    Google Scholar 

  39. Ruiz-García J (2011) Inelastic displacement ratios for seismic assessment of structures subjected to forward-directivity near-fault ground motions. J Earthq Eng 15(3):449–468

    Article  Google Scholar 

  40. Ruiz-García J, Miranda E (2003) Inelastic displacement ratios for evaluation of existing structures. Earthq Eng Struct Dyn 32(8):1237–1258

    Article  Google Scholar 

  41. Ruiz-García J, Miranda E (2005) Performance-based assessment of existing structures accounting for residual displacements, Report No. 153. John A. Blume Earthquake Center, Stanford University. https://purl.stanford.edu/tz123dt3431. Accessed Nov 2016

  42. Santoyo MA (2014) Finite fault analysis and near-field dynamic strain and rotation estimates due to the 11/05/2011 (Mw5.2) Lorca earthquake, south-eastern Spain. Bull Earthq Eng 12(5):1855–1870

    Article  Google Scholar 

  43. Shahi SK, Baker JW (2011) An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bull Seismol Soc Am 101(2):742–755

    Article  Google Scholar 

  44. Shahi SK, Baker JW (2013) A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment, Report No. 180. The John A. Blume Earthquake Engineering Research Center, Stanford University

  45. Shahi SK, Baker JW (2014) NGA-West2 models for ground-motion directionality. Earthq Spectra 30(3):1285–1300

    Article  Google Scholar 

  46. Shakal A, Graizer V, Huang M, Borcherdt R, Haddadi H, Lin K-W, Stephens C, Roffers P (2005) Preliminary analysis of strong-motion recordings from the 28 September 2004 Parkfield, California earthquake. Seismol Res Lett 76(1):27–39

    Article  Google Scholar 

  47. Somerville PG, Smith NF, Graves RW, Abrahamson NA (1997) Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismol Res Lett 68(1):199–222

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Gordo-Monsó.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gordo-Monsó, C., Miranda, E. Significance of directivity effects during the 2011 Lorca earthquake in Spain. Bull Earthquake Eng 16, 2711–2728 (2018). https://doi.org/10.1007/s10518-017-0301-9

Download citation

Keywords

  • Lorca earthquake
  • Pulse
  • Directivity
  • Directionality
  • Near-fault
  • Inelastic spectra