Skip to main content
Log in

Earthquake-Rotated Objects (EROs) induced by the 2016 Mw6.0 Amatrice (Central Italy) earthquake: the contribution from site and source effects

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The 2016 August 24th, M w 6.0 Amatrice (Central Italy) normal faulting earthquake produced a remarkable number of Earthquake-Rotated Objects (EROs) that affected chimneys, as well as pillars and capitals on gates and walls. In this paper we present the EROs dataset, and perform some qualitative analyses to evaluate if specific geological and seismological features such as intensity, epicentral distance, potential amplification of the seismic shaking at the site, heterogeneities of the rupture on the fault and directivity effects, and peak ground accelerations, favoured the distribution of EROs observed after the earthquake. A first important outcome is that the distribution of the EROs of Amatrice 2016 mimics the general pattern of damage, and that EROs occurrence should be regarded as a diagnostic element of intensity degrees lower than those presently established by formalized scales. We also find that site factors, namely the surface geology and the local amplification, are the most significant contributors to the EROs occurrence. In addition, we find that the position respect to the fault can enhance the occurrence of local rotations. The distinctive features characterizing the 2016 EROs dataset resemble and substantiate the most important findings produced by previous studies carried out following the 2009 L’Aquila and 2012 Emilia seismic sequences, and allow to calibrate the empirical relations on the EROs distribution presented in the world Catalog of Earthquake-Rotated Objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bignami C, Tolomei T, Pezzo G, Guglielmino F, Atzori S, Trasatti E, Antonioli A, Stramondo S, Salvi S (2016) Source identification for situational awareness of the August 24th 2016 Central Italy event. Ann Geophys 59:5. doi:10.4401/AG-7233

    Google Scholar 

  • Bouchon M, Gaffet S, Cornou C, Dietrich M, Glot JP, Corboulex F, Caserta A, Cultrera G, Marra F, Guiguet R (2000) Observations of vertical ground accelerations exceeding gravity during the 1977 Umbria–Marche (Central Italy) earthquakes. J Seismol 4:517–523

    Article  Google Scholar 

  • Castellano C, Cucci L, Tertulliani A, Pietrantonio G (2012) Rotational effects associated with ground motion during the Mw6.3 2009 L’Aquila (Central Italy) earthquake. Boll Geof Teor Appl 53(3):299–312. doi:10.4430/bgta0045

    Google Scholar 

  • Centamore E, Adamoli L, Berti D, Bigi G, Bigi S, Casnedi R, Cantalamessa G, Fumanti F, Morelli C, Micarelli A, Ridolfi M, Salvucci R (1992) Carta geologica dei bacini della Laga e del Cellino e dei rilievi carbonatici circostanti. In: Studi Geologici Camerti, Vol Spec Università degli Studi, Dipartimento di Scienze della Terra. SELCA, Firenze

  • Chang T-Y, Cotton F, Tsai Y-B, Angelier J (2004) Quantification of hanging-wall effects on ground motion: some insights from the 1999 Chi–Chi earthquake. Bull Seismol Soc Am 94(6):2186–2197

    Article  Google Scholar 

  • Cheloni D, Serpelloni E, Devoti R, D’Agostino N, Pietrantonio G, Riguzzi F, Anzidei M, Avallone A, Cavaliere A, Cecere G, D’Ambrosio C, Esposito A, Falco L, Galvani A, Selvaggi G, Sepe V, Calcaterra S, Giuliani R, Mattone M, Gambino P, Abruzzese L, Cardinale V, Castagnozzi A, De Luca G, Massucci A, Memmolo A, Migliari F, Minichiello F, Zarrilli L (2016) GPS observations of coseismic deformation following the 2016, August 24, Mw6 Amatrice earthquake (Central Italy): data, analysis and preliminary fault model. Ann Geophys 59:5. doi:10.4401/ag-7269

    Google Scholar 

  • Cucci L, Tertulliani A (2011) Clues for a relation between rotational effects induced by the 2009 Mw6.3 L’Aquila (central Italy) earthquake and site and source effects. Bull Seismol Soc Am 101(3):1109–1120. doi:10.1785/0120100264

    Article  Google Scholar 

  • Cucci L, Tertulliani A (2013) The earthquake rotated objects induced by the 2012 Emilia (Northern Italy) seismic sequence: relation with seismological and geomorphological factors. Seismol Res Lett 84(6):973–981. doi:10.1785/0220130046

    Article  Google Scholar 

  • Cucci L, Tertulliani A, Lombardi AM (2016) The first world catalog of earthquake-rotated objects (EROs), part I: outline, general observations, outlook. Bull Seismol Soc Am. doi:10.1785/20150255

    Google Scholar 

  • Faenza L, Lauciani V, Michelini A (2016) The ShakeMaps of the Amatrice, M6, earthquake. Ann Geophys 59:5. doi:10.4401/ag-7238

    Google Scholar 

  • Galli P, Peronace E, Bramerini F, Castenetto S, Naso G, Cassone F, Pallone F (2016) The MCS intensity distribution of the devastating 24 August 2016 earthquake in Central Italy (Mw6.2). Ann Geophys 59:5. doi:10.4401/ag-7287

    Google Scholar 

  • Hinzen K-G (2009) Simulation of toppling columns in archaeoseismology. Bull Seismol Soc Am 99:2855–2875

    Article  Google Scholar 

  • Hinzen K-G (2012) Rotation of vertically oriented objects during earthquakes. J Seismol 16:797–814. doi:10.1007/s10950-011-9255-6

    Article  Google Scholar 

  • Hinzen K-G, Cucci L, Tertulliani A (2013) Rotation of objects during the 2009 L’Aquila earthquake analyzed with 3D laser scans and discrete-element models. Seismol Res Lett 84(5):745–751. doi:10.1785/0220130010

    Article  Google Scholar 

  • ISIDe Working Group (2016) Version 1.0. doi:10.13127/ISIDe

  • Lombardi AM, Cucci L, Tertulliani A (2016) The first world catalog of earthquake-rotated objects (EROs), part II: statistical analyses and related interpretations. Bull Seismol Soc Am. doi:10.1785/0120150256

    Google Scholar 

  • Masi A, Santarsiero G, Chiauzzi L, Gallipoli MR, Piscitelli S, Vignola L, Bellanova J, Calamita G, Perrone A, Lizza C, Grimaz S (2016) Different damage observed in the villages of Pescara del Tronto and Vezzano after the M6.0 August 24, 2016 Central Italy earthquake and site effects analysis. Ann Geophys 59:5. doi:10.4401/AG-7271

    Google Scholar 

  • Michele M, Di Stefano R, Chiaraluce L, Cattaneo M, De Gori P, Monachesi G, Latorre D, Marzorati S, Valoroso L, Ladina C, Chiarabba C, Lauciani V, Fares M (2016) The Amatrice 2016 seismic sequence: a preliminary look at the mainshock and aftershocks distribution. Ann Geophys 59:5. doi:10.4401/ag-7227

    Google Scholar 

  • Oglesby DD, Archuleta RJ, Nielsen SB (2000) The three dimensional dynamics of dipping faults. Bull Seismol Soc Am 90:616–628

    Article  Google Scholar 

  • Pierantoni P, Deiana G, Galdenzi S (2013) Stratigraphic and structural features of the Sibillini Mountains (Umbria–Marche Apennines, Italy). Italian J Geosci 132(3):497–520

    Article  Google Scholar 

  • Pondrelli S, Salimbeni S, Perfetti P (2016) Moment tensor solutions for the Amatrice 2016 seismic sequence. Ann Geophys 59:5. doi:10.4401/ag-7240

    Google Scholar 

  • Quest Working Group (2016) The 24 August 2016 Amatrice earthquake: macroseismic survey in the damage area and EMS intensity assessment. Ann Geophys 59:5. doi:10.4401/ag-7203

    Google Scholar 

  • Strasser FO, Bommer JJ (2009) Review: strong ground motion—have we seen the worst? Bull Seismol Soc Am 99(5):2613–2637

    Article  Google Scholar 

  • Tinti E, Scognamiglio L, Michelini A, Cocco M (2016) Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophys Res Lett 43:10.745–10.752. doi:10.1002/2016GL071263

    Article  Google Scholar 

  • Trifunac M (2009) Earthquake engineering: non linear problems in. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 2421–2437

    Chapter  Google Scholar 

  • Yang F, Luo Q, Che W (2010) Torsional phenomena in 2008 great Wenchuan earthquake. Earthq Sci 23:79–85. doi:10.1007/s11589-009-0077-3

    Article  Google Scholar 

Download references

Acknowledgements

We warmly thank all the colleagues from our Institute and from other organizations for their effort in providing data and information about several Earthquake-Rotated Objects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cucci, L., Lombardi, A.M. & Tertulliani, A. Earthquake-Rotated Objects (EROs) induced by the 2016 Mw6.0 Amatrice (Central Italy) earthquake: the contribution from site and source effects. Bull Earthquake Eng 16, 1061–1077 (2018). https://doi.org/10.1007/s10518-017-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0242-3

Keywords

Navigation