Abstract
In this study, we analyse the susceptibility to liquefaction of the Pozzone site, which is located on the northern side of the Fucino lacustrine basin in central Italy. In 1915, this region was struck by a M 7.0 earthquake, which produced widespread coseismic surface effects that were interpreted to be liquefaction-related. However, the interpretation of these phenomena at the Pozzone site is not straightforward. Furthermore, the site is characterized by an abundance of fine-grained sediments, which are not typically found in liquefiable soils. Therefore, in this study, we perform a number of detailed stratigraphic and geotechnical investigations (including continuous-coring borehole, CPTu, SDMT, SPT, and geotechnical laboratory tests) to better interpret these 1915 phenomena and to evaluate the liquefaction potential of a lacustrine environment dominated by fine-grained sedimentation. The upper 18.5 m of the stratigraphic succession comprises fine-grained sediments, including four strata of coarser sediments formed by interbedded layers of sand, silty sand and sandy silt. These strata, which are interpreted to represent the frontal lobes of an alluvial fan system within a lacustrine succession, are highly susceptible to liquefaction. We also find evidence of paleo-liquefaction, dated between 12.1–10.8 and 9.43–9.13 kyrs ago, occurring at depths of 2.1–2.3 m. These data, along with the aforementioned geotechnical analyses, indicate that this site would indeed be liquefiable in a 1915-like earthquake. Although we found a broad agreement among CPTu, DMT and shear wave velocity “simplified procedures” in detecting the liquefaction potential of the Pozzone soil, our results suggest that the use and comparison of different in situ techniques are highly recommended for reliable estimates of the cyclic liquefaction resistance in lacustrine sites characterized by high content of fine-grained soils. In geologic environments similar to the one analysed in this work, where it is difficult to detect liquefiable layers, one can identify sites that are susceptible to liquefaction only by using detailed stratigraphic reconstructions, in situ characterization, and laboratory analyses. This has implications for basic (Level 1) seismic microzonation mapping, which typically relies on the use of empirical evaluations based on geologic maps and pre-existing sub-surface data (i.e., age and type of deposits, prevailing grain size, with particular attention paid to clean sands, and depth of the water table).
Similar content being viewed by others
References
AGI, Burghignoli A, Cavalera L, Chieppa V, Jamiolkowski M, Mancuso C, Marchetti S, Pane V, Paoliani P, Silvestri F, Vinale F, Vittori E (1991) Geotechnical characterization of Fucino clay. In: Proceedings of X ECSMFE, Firenze, vol 1, pp 27–40
Akkar S, Sandikkaya MA, Bommer JJ (2014a) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387. doi:10.1007/s10518-013-9461-4
Akkar S, Sandikkaya MA, Bommer JJ (2014b) Erratum to: Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):389–390. doi:10.1007/s10518-013-9508-6
Amoroso S, Boncio P, Famiani D, Hailemikael S, Manuel MR, Milana G, Monaco P, Vassallo M, Vessia G (2015a) Preliminary Liquefaction Studies for Seismic Microzonation of Avezzano, Italy. In: 3rd International conference on the flat dilatometer, 14–16 June 2015, Rome, Italy, pp 285–292. ISBN: 979-12-200-0116-8. http://www.marchetti-dmt.it/conference/dmt15/papers%20DMT%202015%20(pdf)/77.pdf#page=1
Amoroso S, Boncio P, Famiani D, Hailemikael S, Manuel MS, Milana G, Monaco P, Vassallo M, Vessia G (2015b) Liquefaction assessment by in situ testing in the Fucino plain (central Italy). Miscellanea INGV, Abstracts Volume 6th International INQUA Paleoseismology, Active Tectonics Archaeoseismology, 19–24 April 2015, Pescina, Fucino Basin, Italy, vol 27, pp 21–24. ISSN: 2039-6651. http://www.ingv.it/editoria/miscellanea/2015/miscellanea27/
Andrew DCA, Martin GR (2000) Criteria for liquefaction of silty soils. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, NZ. Paper 0312
Andrus RD, Stokoe KH (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng ASCE 126(11):1015–1025
Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9:1899–1920. doi:10.1007/s10518-011-9313-z
Boncio P, Milana G, Cara F, Di Giulio G, Di Naccio D, Famiani D, Galadini F, Rosatelli G, Vassallo M (2015) Local seismichazard from detailed geologic investigations: the Avezzano town in the epicentral area of the M7, 1915 earthquake (Fucino basin, centralItaly). In: 6th International INQUA meeting on paleoseismology, active tectonics and archaeoseismology, 19–24 April 2015, Pescina, Fucino Basin, Italy, Miscellanea INGV 27
Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085. doi:10.1193/070113EQS184M
Bosi C, Galadini F, Messina P (1995) Stratigrafia plio-pleistocenica della conca del Fucino. Il Quat 8(1):83–94
Bray J, Sancio RB (2006) Assessment of the liquefaction susceptibility of fine-grained soils. J Geotech Geoenviron Eng 132(9):1165–1177
Bray JD, Sancio RB, Durgunoglu T, Onalp A, Youd TL, Stewart JP, Seed RB, Cetin OK, Bol E, Baturay MB, Christensen C, Karadayilar T (2004) Subsurface characterization at ground failure sites in Adapazari, Turkey. J Geotech Geoenviron Eng 130:673–685
Bray J, Cubrinovski M, Zupan J, Taylor M (2014) Liquefaction effects on buildings in the central business district of Christchurch. Earthq Spectra 30(1):85–109
Cara F, Di Giulio G, Cavinato GP, Famiani D, Milana G (2011) Seismic characterization and monitoring of Fucino Basin (Central Italy). Bull Earthq Eng 9:1961–1985. doi:10.1007/s10518-011-9282-2
Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13(6):1587–1612. doi:10.1007/s10518-014-9685-y
Cavinato GP, Carusi C, Dell’Asta M, Miccadei E, Piacentini T (2002) Sedimentary and tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sed Geol 148:29–59
Centamore E, Crescenti U, Dramis F (2006) Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, Foglio 368 “Avezzano”, APAT – Servizio Geologico d’Italia e Regione Abruzzo – Servizio Difesa del Suolo, S.EL.CA., Firenze
Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, Kayen RE, Moss RES (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 130(12):1314–1340
Famiani D, Boncio P, Cara F, Cogliano R, Giulio GD, Fodarella A, Milana G, Pucillo S, Riccio, G, Vassallo M (2015) Local seismic response in a large intra-mountain basin as observed from earthquakes and microtremor recordings: the Avezzano Area (Central Italy). In: Lollino G et al. (eds) Engineering geology for society and territory, vol 5. doi: 10.1007/978-3-319-09048-1_220. ISBN 978-3-319-09047-4, ISBN (eBook) 978-3-319-09048-1
Fortunato C, Martino S, Prestininzi A, Romeo RW, Fantini A, Sanandrea P (2012) New release of the Italian catalogue of earthquake-induced ground failures (CEDIT). Ital J Eng Geol Environ 5:55. doi:10.4408/IJEGE.2012-02.O-05
Foti S, Lancellotta R, Marchetti D, Monaco P, Totani G (2006) Interpretation of SDMT tests in a transversely isotropic medium. In: Failmezger RA, Anderson JB (eds) Flat dilatometer testing, proceedings of 2nd international conference on the flat dilatometer, Washington, D.C., USA, April 2–5, pp 275–280
Galadini F, Galli P (1999) The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in the central Apennines. Tectonophysics 308:143–170
Galadini F, Messina P (1994) Plio-Quaternary tectonics of the Fucino basin and surrounding areas (central Italy). G Geol 56:73–99
Galadini F, Galli P, Giraudi C (1997) Geological investigation of italian earthquakes: new paleoseismological data from the Fucino plain (central Italy). J Geodyn 24:87–103
Galadini F, Galli P, Giraudi C (1999) Gli effetti geologici del terremoto del 1915. In: Castenetto S, Galadini F (eds): “13 gennaio 1915, il terremoto nella Marsica”. Servizio Sismico Nazionale e C.N.R. Istituto di Ricerca sulla Tettonica Recente, Roma, pp 283–299
Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187
Galli P, Galadini F, Pantosti D (2008) Twenty years of paleoseismology in Italy. Earth Sci Rev. doi:10.1016/j.earseirev.2008.01.001
Galli P, Messina P, Giaccio B, Peronace E, Quadrio B (2012) Early Pleistocene to late Holocene activity of the Magnola fault (Fucino fault system, central Italy). Bollettino di Geofisica Teorica ed Applicata 53(4):435–458
Giraudi C (1988) Evoluzione geologica della piana del Fucino (Abruzzo) negli ultimi 30.000 anni. Il. Quaternario 1(2):131–159
Giraudi C (1999) Evoluzione geologica tardo pleistocenica ed olocenica della Piana del Fucino e dei versanti adiacenti: analisi di nuovi dati stratigrafici e radiometrici e ricostruzione delle variazioni ambientali. In: Castenetto S, Galadini F (eds) 13 gennaio 1915, il terremoto nella Marsica. Servizio Sismico Nazionale e C.N.R. Istituto di Ricerca sulla Tettonica Recente, Roma, pp 183–197
Idriss IM, Boulanger RW (2004) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. In: Proceedings of 11th international conference on soil dynamics and earthquake engineering and 33d international conference on earthquake geotechnical engineering, Berkeley, pp 32–56
Idriss IM, Boulanger RW (2006) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. J Soil Dyn Earthq Eng 26:115–130
Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. ERI Report, Publ. No.MNO-12, Earthquake Engineering Research Institute 2008
Iwasaki T, Tokida K, Tatsuoka F, Watanabe S, Yasuda S, Sato H. (1982) Microzonation for soil liquefaction potential using simplified methods. In: Proceedings of 3rd international conference on microzonation, Seattle, vol 3, pp 1319–1330
Kayen R, Moss R, Thompson E, Seed R, Cetin K, Kiureghian A, Tanaka Y, Tokimatsu K (2013) Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 139(3):407–419
Locati M, Camassi R, Rovida A, Ercolani E, Bernardini F, Castelli V, Caracciolo C H, Tertulliani A, Rossi A, Azzaro R, D’Amico S, Conte S, Rocchetti E (2016) DBMI15, the 2015 version of the Italian Macroseismic Database. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-DBMI15. http://emidius.mi.ingv.it/CPTI15-DBMI15/index_en.htm
Marchetti S (1980) In situ tests by flat dilatometer. J Geotech Eng Div ASCE 106(GT3):299–321
Marchetti S, Monaco P, Totani G, Calabrese M (2001) The flat dilatometer test (DMT) in soil investigations. A Report by the ISSMGE Committee TC16. In: Failmezger RA, Anderson JB (eds) Proceedings of international conference on in situ measurement of soil properties and case Histories, Bali, 2001, official version reprinted in Flat dilatometer testing, proceedings of 2nd international conference on the flat dilatometer, Washington D.C., April 2–5, 2006, pp 7–48
Marchetti S, Monaco P, Totani G, Marchetti D (2008) In situ tests by seismic dilatometer (SDMT). In: From research to practice in geotechnical engineering, Geotechnical Special Publication No. 180, pp 292–311, ASCE
Margottini C, Screpanti A (1999) Attribuzione della magnitudo al terremoto di Avezzano del 13 gennaio 1915 e studio dell’evoluzione temporale della crisi sismica associata. In: Castenetto S, Galadini F (eds) 13 gennaio 1915, il terremoto nella Marsica. Servizio Sismico Nazionale e C.N.R, Istituto di Ricerca sulla Tettonica Recente, Roma, pp 301–318
Michetti AM, Brunamonte F, Serva L, Vittori E (1996) Trench investigations of the 1915 Fucino earthquake fault scarps (Abruzzo, Central Italy): geological evidence of large historical events. J Geophys Res 101:5921–5936
Monaco P, Marchetti S (2007) Evaluating liquefaction potential by seismic dilatometer (SDMT) accounting for aging/stress history. In: Pitilakis KD (ed) Proceedings of 4th international conference on earthquake geotechnical engineering, Thessaloniki, Paper 1626
Monaco P, Schmertmann JH (2007) Discussion of “Accounting for soil aging when assessing liquefaction potential” by Evangelia Leon, Sarah L. Gassman, and Pradeep Talwani (in J Geotech Geoenviron Eng 132(3), 363–377). J Geotech Geoenviron Eng 133(9):1177–1179
Monaco P, Marchetti S, Totani G, Calabrese M (2005) Sand liquefiability assessment by flat dilatometer test (DMT). In: Proceedings of XVI ICSMGE, Osaka, vol 4, pp 2693–2697
Nisio S, Caramanna G, Ciotoli G (2007) Sinkholes in Italy: first results on the inventory and analysis. In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation, vol 279. Geological Society, Special Publications, London, pp 23–45. doi:10.1144/SP279.4
Oddone E (1915) Gli elementi fisici del grande terremoto Marsicano-Fucense del 13 gennaio 1915. Bollettino della Società Sismologica Italiana 19:71–291
Pace B, Albarello D, Boncio P, Dolce M, Galli P, Messina P, Peruzza L, Sabetta F, Sanò T, Visini F (2011) Predicted ground motion after the L’Aquila 2009 earthquake (Italy, Mw6.3): input spectra for seismic microzoning. Bull Earthq Eng 9:199–230
Petitta M, Burri E, Del Bon A, Marchetti A (2005) Carta idrogeologica del Fucino, scala 1/50.000. Atlante tematico del Fucino, foglio 1, ARSSA Abruzzo, SELCA Firenze
Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech J 27(1):151–158
Robertson PK (2010) Soil behaviour type from the CPT: an update. In: 2nd International symposium on cone penetration testing, CPT’10, Huntington Beach, CA, USA
Robertson PK (2012) The James K. Mitchell Lecture: interpretation of in situ tests—some insights. In: Proceedings of 4th international conference on geotechnical and geophysical site characterization—ISC’4, Porto de Galinhas, Brazil, vol 1, pp 3–24
Robertson PK, Wride CE (1998) Evaluating cyclic liquefaction potential using the cone penetration test. Can Geotech J 35(3):442–459
Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi:http://doi.org/10.6092/INGV.IT-CPTI15. http://emidius.mi.ingv.it/CPTI15-DBMI15/index_en.htm
Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Geotech Eng Div ASCE 97(9):1249–1273
Serva L, Blumetti AM, Michetti AM (1986) Gli effetti sul terreno del terremoto del Fucino (13 Gennaio 1915); tentative di interpretazione della evoluzione tettonica recente di alcune strutture. Memorie della Società Geologica Italiana 35:893–907
SM Working Group (2015) Guidelines for Seismic Microzonation. Civil Protection Department and Conference of Regions and Autonomous Provinces of Italy. 1 Vol. English edition of: Gruppo di lavoro MS, Indirizzi e criteri per la microzonazione sismica, Conferenza delle Regioni e delle Province autonome – Dipartimento della protezione civile, Roma, 2008, 3 vol. e Dvd. Available online at http://www.protezionecivile.gov.it/httpdocs/cms/attach_extra/GuidelinesForSeismicMicrozonation.pdf
Sonmez H (2003) Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ Geol 44(7):862–871. doi:10.1007/s00254-003-0831-0
Totani G, Monaco P, Leopardi M, Farroni A (2000) Stabilization and environmental restoration of the main central channel in the Fucino plain, Italy. In: Moore D, Hungr O (eds) Proceedings of 8th IAEG Congress, Vancouver, Canada, 21–25 Sept 1998, Balkema, Rotterdam, pp 4215–4222
Tsai P, Lee D, Kung GT, Juang CH (2009) Simplified DMT-based methods for evaluating liquefaction resistance of soils. Eng Geol 103:13–22
Wang WS (1979) Some findings in soil liquefaction. Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing
Working Group MPS (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, pp 65 + 5 appendici. http://zonesismiche.mi.ingv.it/
Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dory R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng ASCE 127(10):817–833
Zarlenga AF (1987) I depositi continentali del bacino del Fucino (L’Aquila, Italia Centrale). Geol Romana 26:223–253
Acknowledgements
This work was funded by DiSPUTer (“G. d’Annunzio” University of Chieti, research funds to P. Boncio); FIRB-Abruzzo project (“Indagini ad alta risoluzione per la stima della pericolosità e del rischio sismico nelle aree colpite dal terremoto del 6 aprile 2009”, http://progettoabruzzo.rm.ingv.it/it); Regione Abruzzo (agreement with DiSPUTer “Convenzione per la realizzazione di una Microzonazione sismica di Livello 1 nel Comune di Avezzano (AQ)”); and Studio Prof. Marchetti (Italy). We acknowledge an anonymous referee for the constructive revision of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boncio, P., Amoroso, S., Vessia, G. et al. Evaluation of liquefaction potential in an intermountain Quaternary lacustrine basin (Fucino basin, central Italy). Bull Earthquake Eng 16, 91–111 (2018). https://doi.org/10.1007/s10518-017-0201-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10518-017-0201-z