Skip to main content

Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis

Abstract

Regional seismic damage prediction is an important approach to discover the weakness of a city so as to effectively mitigate seismic losses. A major proportion of regional seismic losses is caused by masonry buildings. As a result, an accurate prediction of the regional seismic damage to masonry buildings has significant engineering and scientific values. Various parameters of the computational models for regional seismic damage predictions usually involve considerable uncertainty, especially for masonry buildings. Therefore, a parametric sensitivity analysis for the regional seismic damage prediction of reinforced masonry buildings is performed in some detail in this study. Damage to this kind of buildings is predicted through nonlinear time-history analysis using the multiple-degree-of-freedom shear model, which can better represent the features of different buildings and ground motions. In the sensitivity analysis, two widely used methods, the first-order second-moment (FOSM) method and the Monte Carlo method, are adopted and their prediction results are compared. The outcomes of this study indicate that the uncertainty of parameters has a small influence on the analysis results when the total number of regional buildings is large. However the uncertainty cannot be neglected for individual building analysis. In addition, the FOSM method, which is more time-saving, can achieve a similar level of prediction as the Monte Carlo simulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. American Society of Civil Engineers (ASCE) (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7-10, Reston

    Google Scholar 

  2. Anderson TW (1984) Multivariate statistical analysis. Wiley, New York

    Google Scholar 

  3. Atamturktur S, Hemez FM, Laman JA (2012) Uncertainty quantification in model verification and validation as applied to large scale historic masonry monuments. Eng Struct 43:221–234

    Article  Google Scholar 

  4. ATC (1985) Earthquake damage evaluation data for California (ATC-13). Applied Technology Council, Redwood

    Google Scholar 

  5. Bayraktar A, Altunışık AC, Muvafık M (2016) Field investigation of the performance of masonry buildings during the October 23 and November 9, 2011, Van earthquakes in Turkey. J Perform Constr Facil 30(2):04014209

    Article  Google Scholar 

  6. D’ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T, Crowley H, Silva V (2014) Guidelines for analytical vulnerability assessment of low/mid-rise buildings: methodology. Vulnerability global component Project

  7. Del Gaudio C, Ricci P, Verderame GM, Manfredi G (2016) Observed and predicted earthquake damage scenarios: the case study of Pettino (L’Aquila) after the 6th April 2009 event. Bull Earthq Eng 14:2643–2678

    Article  Google Scholar 

  8. Fang L (2009) Experimental research on seismic shear strength and seismic behavior of autoclaved fly ash brick wall. Dissertation, Changsha University of Science and Technology, Changsha, China (in Chinese)

  9. Fellin W, King J, Kirsch A, Oberguggenberger M (2010) Uncertainty modelling and sensitivity analysis of tunnel face stability. Struct Saf 32(6):402–410

    Article  Google Scholar 

  10. FEMA (2009) Quantification of building seismic performance factors (FEMA P695). Federal Emergency Management Agency, Washington

    Google Scholar 

  11. FEMA (2012a) Multi-hazard loss estimation methodology: earthquake model (HAZUS-MH 2.1 technical manual). Federal Emergency Management Agency, Washington

    Google Scholar 

  12. FEMA (2012b) Seismic performance assessment of buildings. Volume 1 methodology (FEMA-P58). Federal Emergency Management Agency, Washington

    Google Scholar 

  13. Galasso C, Maddaloni G, Cosenza E (2014) Uncertainly analysis of flexural overstrength for capacity design of RC beams. J Struct Eng 140(7):04014037

    Article  Google Scholar 

  14. Galasso C, Stillmaker K, Eltit C, Kanvinde A (2015) Probabilistic demand and fragility assessment of welded column splices in steel moment frames. Earthq Eng Struct Dyn 44(11):1823–1840

    Article  Google Scholar 

  15. Gong YN (2008) Experimental research on the seismic performance of concrete perforated brick shear wall. Dissertation, School of Civil Engineering, Zhengzhou University, Zhengzhou, China (in Chinese)

  16. Gu XL, Chen GL, Ma JY, Li X (2010) Experimental study on mechanical behavior of concrete perforated brick walls under cyclic loading. J Build Struct 31(12):123–131 (in Chinese)

    Google Scholar 

  17. Guo ZG, Wu CW, Sun WM, Ni TY (2014) Seismic behavior of recycled concrete perforated brick masonry. J Basic Sci Eng 22(3):539–547 (in Chinese)

    Google Scholar 

  18. Han C (2009) Experimental research on the behavior of brick masonry column and the seismic behavior of autoclaved fly ash brick. Dissertation, Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China (in Chinese)

  19. Hao T, Liu LX, Wang RY (2008) Experimental study on the seismic performance of concrete perforated brick walls. Build Block Block Build 4:22–25 (in Chinese)

    Google Scholar 

  20. Haselton CB, Liel AB, Taylor-Lange S, Deierlein GG (2008) Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Engineering Research Center (PEER Report 2007/03), University of California, Berkeley

  21. He XQ (2008) Multivariate statistical analysis, 2nd edn. China Renmin University Press, Beijing (in Chinese)

    Google Scholar 

  22. He CR, Zhang R, Chen Q, Han SL (2011) Earthquake characteristics and building damage in high-intensity areas of Wenchuan earthquake I: Yingxiu town. Nat Hazards 57(2):435–451

    Article  Google Scholar 

  23. Homma S, Fujita K, Ichimura T, Hori M, Citak S, Hori T (2014) A physics-based Monte Carlo earthquake disaster simulation accounting for uncertainty in building structure parameters. Proc Comput Sci 29:855–865

    Article  Google Scholar 

  24. Hori M (2006) Introduction to computational earthquake engineering. Imperial College Press, London

    Book  Google Scholar 

  25. Hori M, Ichimura T (2008) Current state of integrated earthquake simulation for earthquake hazard and disaster. J Seismolog 12(2):307–321

    Article  Google Scholar 

  26. Huang WW (2006) Seismic test of small-sized concrete block masonry walls. Cities Towns Constr Guangxi 1:69–71 (in Chinese)

    Google Scholar 

  27. Ibarra LF, Krawinkler H (2004) Global collapse of deteriorating MDOF systems. In: 13th world conference on earthquake engineering, Vancouver, BC, Canada

  28. Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511

    Article  Google Scholar 

  29. Jiang HJ, Fu B, Liu L, Yin XW (2014) Study on seismic performance of a super-tall steel-concrete hybrid structure. Struct Des Tall Spec Build 23(5):334–349

    Article  Google Scholar 

  30. Kalpić D, Hlupić N (2011) Multivariate normal distributions. International encyclopedia of statistical science. Springer, Berlin, pp 907–910

    Book  Google Scholar 

  31. Kircher CA, Reitherman RK, Whitman RV, Arnold C (1997) Estimation of earthquake losses to buildings. Earthq Spectra 13(4):703–720

    Article  Google Scholar 

  32. Lee TH, Mosalam KM (2005) Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method. Earthq Eng Struct Dyn 34(14):1719–1736

    Article  Google Scholar 

  33. Liel AB, Haselton CB, Deierlein GG, Baker JW (2009) Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct Saf 31(2):197–211

    Article  Google Scholar 

  34. Lin XC, Zhang HY, Chen HF, Lin JQ (2015) Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake. Earthq Eng Eng Vib 14(1):169–176

    Article  Google Scholar 

  35. Liu XH, Zhang HX, Liu JW, Liu LQ (1981) A Study of Aseismic characteristics of masonry building with reinforced concrete tie-columns. J Build Struct 6:47–55 (in Chinese)

    Google Scholar 

  36. Liu Y, Xu YF, Zhang H (2011) Experimental study on mechanical behavior of fly ash block walls restricted by constructional columns and top beam. Ind Constr 41(8):38–41 (in Chinese)

    Google Scholar 

  37. Lu XZ, Guan H (2017) Earthquake disaster simulation of civil infrastructures: from tall buildings to urban areas. Springer, Singapore

    Book  Google Scholar 

  38. Lu X, Lu XZ, Guan H, Ye LP (2013a) Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthq Eng Struct Dyn 42(5):705–723

    Article  Google Scholar 

  39. Lu XZ, Lu X, Guan H, Zhang WK, Ye LP (2013b) Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. J Constr Steel Res 82:59–71

    Article  Google Scholar 

  40. Lu XZ, Han B, Hori M, Xiong C, Xu Z (2014) A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing. Adv Eng Softw 70:90–103

    Article  Google Scholar 

  41. Lu XZ, Xie LL, Guan H, Huang YL, Lu X (2015a) A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elem Anal Des 98:14–25

    Article  Google Scholar 

  42. Lu XZ, Chen L, Zeng X, Lu WQ (2015b) Numerical simulation for seismic responses of engineering structures based on cloud computing. J Shenyang Jianzhu Univ (Nat Sci) 31(5):769–777 (in Chinese)

    Google Scholar 

  43. Lu X, Lu XZ, Guan H, Xie LL (2016) Application of earthquake-induced collapse analysis in design optimization of a supertall building. Struct Des Tall Spec Build 25(17):926–946

    Article  Google Scholar 

  44. Luo KH, Wang YY (2012) Researches about the conversion relationships among the parameters of ground motions in the seismic design codes of China, America and Europe. In: 15th world conference on earthquake engineering, Lisbon, Portugal

  45. MAE (2006) Earthquake risk assessment using MAEviz 2.0, a tutorial. Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana-Champaign

  46. Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  47. Melchers RE (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  48. Michel C, Hannewald P, Lestuzzi P, Fäh D, Husen S (2016) Probabilistic mechanics-based loss scenarios for school buildings in Basel (Switzerland). Bull Earthq Eng 15:1471–1496. doi:10.1007/s10518-016-0025-2

    Article  Google Scholar 

  49. Milani G, Benasciutti D (2010) Homogenized limit analysis of masonry structures with random input properties: polynomial response surface approximation and Monte Carlo simulations. Struct Eng Mech 34(4):417–447

    Article  Google Scholar 

  50. MOHURD (2010) Code for seismic design of buildings (GB50011-2010). Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing (in Chinese)

    Google Scholar 

  51. Na UJ, Chaudhuri SR, Shinozuka M (2008) Probabilistic assessment for seismic performance of port structures. Soil Dyn Earthq Eng 28(2):147–158

    Article  Google Scholar 

  52. Pagnini L, Vicente R, Lagomarsino S, Varum H (2008) A mechanical method for the vulnerability assessment of masonry buildings. In: 14th world conference on earthquake engineering, Beijing, China

  53. Parisi F, Augenti N (2012) Uncertainty in seismic capacity of masonry buildings. Buildings 2(3):218–230

    Article  Google Scholar 

  54. Parisi F, Galasso C (2014) Probabilistic strength domains of masonry walls reinforced with externally bonded composites. In: 2nd European conference on earthquake engineering and seismology

  55. Poon D, Hsiao L, Zhu Y, Joseph L, Zuo S, Fu G, Ihtiyar O (2011) Non-linear time history analysis for the performance based design of Shanghai Tower. In: Structures congress, p 541–551

  56. Porter KA, Beck JL, Shaikhutdinov RV (2002) Sensitivity of building loss estimates to major uncertain variables. Earthq Spectra 18(4):719–743

    Article  Google Scholar 

  57. Remo JW, Pinter N (2012) Hazus-MH earthquake modeling in the central USA. Nat Hazards 63(2):1055–1081

    Article  Google Scholar 

  58. Rossetto T, Gehl P, Minas S, Galasso C, Duffour P, Douglas J, Cook O (2016) FRACAS: a capacity spectrum approach for seismic fragility assessment including record-to-record variability. Eng Struct 125:337–348

    Article  Google Scholar 

  59. Rota M, Penna A, Magenes G (2014) A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty. Earthq Eng Struct Dyn 43(7):1045–1066

    Article  Google Scholar 

  60. Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  Google Scholar 

  61. SAC (2009) Classification of earthquake damage to buildings and special structures (GB/T 24335-2009). Standardization Administration of the People’s Republic of China (in Chinese)

  62. Shi QX, Yi WZ (2000) Tentative studies on the aseismic behavior and investigation of collapse resistant capacity of porous masonry walls. J Xi’an Univ Arch Technol 32(3):271–275 (in Chinese)

    Google Scholar 

  63. Shin DH, Kim HJ (2014) Probabilistic assessment of structural seismic performance influenced by the characteristics of hysteretic energy dissipating devices. Int J Steel Struct 14(4):697–710

    Article  Google Scholar 

  64. Sun QZ, Yan WM, Zhou XY, Zhou HY (2006) Experimental study on aseismic performance of bearing two-row-hole concrete block wall with constructional column and horizontal steel bar. Constr Technol 35(6):93–95 (in Chinese)

    Google Scholar 

  65. Tian Y, Lu X, Lu XZ, Li MK, Guan H (2016) Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthq Struct 11(6):925–942. doi:10.12989/eas.2016.11.6.925

    Article  Google Scholar 

  66. Ural A, Doğangün A, Sezen H, Angın Z (2012) Seismic performance of masonry buildings during the 2007 Bala, Turkey earthquakes. Nat Hazards 60(3):1013–1026

    Article  Google Scholar 

  67. Vamvatsikos D, Cornell CA (2006) Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthq Eng Struct Dyn 35(9):1097–1117

    Article  Google Scholar 

  68. Wang ZG, Xue GY, Gao BL, Zhang JT (2003) Experimental research on the seismic behavior of confined shale brick masonry walls. J Southeast Univ 33(5):638–642 (in Chinese)

    Google Scholar 

  69. Wang FC, Liu YX, Liu YL, Yang JC, Guo G, Guo ZS (2004) Experimental research on the seismic behavior of the blind-hole porous brick walls. Brick Tile 5:7–11 (in Chinese)

    Google Scholar 

  70. Wang T, Zhang YQ, Chen X, Li WF (2014) Mechanical behavior of masonry walls retrofitted with prefabricated reinforced concrete panels. Eng Mech 31(8):144–153 (in Chinese)

    Google Scholar 

  71. Weng XP (2010) Numerical simulation analysis and experimental study on seismic behavior of cavity wall masonry. Dissertation, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China (in Chinese)

  72. Wu WB (2012) Study on seismic performance of autoclaved fly ash bricks. Dissertation, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (in Chinese)

  73. Wu H, Zhao SC, Xu H, Zhang PB, Wu G (2012) Damage characteristic analysis of transverse wall of brick concrete masonry school buildings with different structural measures. Build Struct 42(S1):226–230 (in Chinese)

    Google Scholar 

  74. Xiao JZ, Huang JD, Yao Y (2012) Test on seismic behavior of recycled concrete block walls. J Build Struct 42(4):100–109 (in Chinese)

    Google Scholar 

  75. Xie LL, Lu XZ, Guan H, Lu X (2015) Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints and overall structure. J Earthq Eng 19(8):1320–1344

    Article  Google Scholar 

  76. Xiong C, Lu XZ, Hori M, Guan H, Xu Z (2015) Building seismic response and visualization using 3D urban polygonal modeling. Autom Constr 55:25–34

    Article  Google Scholar 

  77. Xiong C, Lu XZ, Guan H, Xu Z (2016) A nonlinear computational model for regional seismic simulation of tall buildings. Bull Earthq Eng 14(4):1047–1069

    Article  Google Scholar 

  78. Xiong C, Lu XZ, Lin XC, Xu Z, Ye LP (2017) Parameter determination and damage assessment for THA-based regional seismic damage prediction of multi-story buildings. J Earthq Eng 21(3):461–485

    Article  Google Scholar 

  79. Xu Z, Lu XZ, Guan H, Han B, Ren AZ (2014) Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine. Nat Hazards 71(3):1679–1693

    Article  Google Scholar 

  80. Xu Z, Lu X, Law KH (2016) A computational framework for regional seismic simulation of buildings with multiple fidelity models. Adv Eng Softw 99:100–110

    Article  Google Scholar 

  81. Yamashita T, Hori M, Kajiwara K (2011) Pet scale computation for earthquake engineering. Comput Sci Eng 13(4):44–49

    Article  Google Scholar 

  82. Yan KF (1985) Experimental research on the seismic behavior of the KP_1 perforated clay brick walls. Sichuan Build Sci 1:34–39 (in Chinese)

    Google Scholar 

  83. Yang YX (2008) Experimental study on seismic performance of autoclaved fly ash-lime solid brick walls. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  84. Yang DJ, Gao YF, Sun JB, Wang SX, Cheng QX (2000) Experimental study on aseismic behavior of concrete block walls with construction-core column system. J Build Struct 21(4):22–27 (in Chinese)

    Google Scholar 

  85. Yang WJ, Chen LQ, Zhu XQ (2008) Experimental study on seismic behavior of concrete perforated brick walls. Eng Mech 25(9):126–133 (in Chinese)

    Google Scholar 

  86. Ye YH, Li LQ, Sun WM, Gu Z, Cheng JG (2004) Experimental study on seismic behaviors of hollow block wall filled with foaming concrete. Earthq Eng Eng Vib 24(5):154–158 (in Chinese)

    Google Scholar 

  87. Yepes-Estrada C, Silva V, Rossetto T, D’Ayala D, Ioannou I, Meslem A, Crowley H (2016) The Global Earthquake Model physical vulnerability database. Earthq Spectra 32(4):2567–2585

    Article  Google Scholar 

  88. Yi DH (1996) Non-parametric statistics: method and application. China Statistics Press, Beijing (in Chinese)

    Google Scholar 

  89. Yu JG (2003) Study on lateral bearing capacity and lateral stiffness of prestressed brick walls. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  90. Zeng X, Lu XZ, Yang TY, Xu Z (2016) Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazards 83(1):177–192

    Article  Google Scholar 

  91. Zhang H (2005) Experimental study on seismic and crack-resistance behavior of composite concrete block masonry walls. Dissertation, College of Civil Engineering, Nanjing University of Technology, Nanjing, China (in Chinese)

  92. Zhang W (2007a) The finite element analysis of experimental results of and research to shear capacity of CFRP strengthened masonry. Dissertation, School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China (in Chinese)

  93. Zhang H (2007b) Experimental study on seismic behavior of load bearing walls with opening built by fly ash-autoclaved bricks and fly ash block walls restricted by constructional columns and topbeam. Dissertation, College of Civil Science and Engineering, Yangzhou University, Yangzhou, China (in Chinese)

  94. Zhang Z (2010) Experimental research a theoretical analysis on seismic behavior of masonry strengthened by SGFRP. Dissertation, Wuhan University of Technology, School of Civil Engineering and Architecture, Wuhan, China ( in Chinese)

  95. Zheng NN (2010) Research on seismic behavior of masonry structures with fabricated tie-columns. Dissertation, School of Civil Engineering, Chongqing University, Chongqing, China (in Chinese)

  96. Zhang YQ (2014) Seismic damage analyses of masonry structure retrofitted by prefabricated reinforced concrete panels. Dissertation, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (in Chinese)

  97. Zhou HY (2004) Experimental study on seismic behavior of small concrete hollow block walls restricted by constructional columns. Dissertation, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China (in Chinese)

  98. Zhou XY, Li WJ, Yan WM, Guo MN, Zhou HY (2006) An experimental study on the seismic behavior of small concrete block walls confined by tie columns and beams. China Civ Eng J 39(8):45–50 (in Chinese)

    Google Scholar 

  99. Zhou Y, Shi W, Han R (2012) Vibration test and analysis of the fundamental period of multi-story masonry structures with large-bay. Eng Mech 29(11):197–204 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51578320, 51378299) and the National Key Technology R&D Program (No. 2015BAK14B02). The authors would like also to acknowledge Professor Quanwang Li and Mr. Xiang Zeng for their contributions to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinzheng Lu.

Appendices

Appendix 1: Typical parameters of reinforced masonry test specimens considered in this study

Reference Number of specimens Typical parameters of specimens
Length (mm) Height (mm) Thickness (mm) Size of tie columns (mm)
Liu et al. (1981) 9 4500 2800 240 240
Yan (1985) 15 2140 1080 240 120
Shi and Yi (2000) 7 2320 1220 240 120
Yang et al. (2000) 3 1400 1120 190 200
Wang et al. (2003) 9 1920, 2220, 4520 1750 240 120
Yu (2003) 4 3000 1500 120 120
Wang et al. (2004) 4 2550 1800 240 150
Ye et al. (2004) 1 2800 2000 240 200
Zhou (2004) 6 4410 2700 190 210
Zhang (2005) 4 2800 2000 270 200
Huang (2006) 2 2380 1480 190 120
Sun et al. (2006) 6 4410 2700 190 210
Zhou et al. (2006) 2 4410 2700 190 210
Zhang (2007a) 3 2110, 2200 2180, 1500 240 120, 200
Zhang (2007b) 2 2720 1520 120 120
Gong (2008) 4 1830, 2730 2160, 1740 240 240
Hao et al. 2008 4 1830, 2730 2160, 1740 240 240
Yang (2008) 1 2800 1400 240 120
Yang et al. (2008) 3 1480, 1730, 2230 1250 120 120
Fang (2009) 4 2800 1360 120 120
Han (2009) 4 2800 1650 240 120
Gu et al. (2010) 8 666, 2000 413, 1240 80, 240 40, 120
Weng (2010) 2 4770 3230 250 250
Zhang (2010) 1 2050 1500 240 150
Zheng (2010) 7 3000 1500 240 240
Liu et al. (2011) 4 2720 1580 120 120
Wu et al. (2012) 4 3300 1650 240 78, 120
Wu (2012) 3 1500, 2000 1750 240 120
Xiao et al. (2012) 3 3200 2200 220 200
Guo et al. (2014) 3 2650 1900 240 200
Wang et al. (2014) 1 2000 1860 240 120
Zhang (2014) 2 2000 1860 240 120

Appendix 2: Parameters obtained for reinforced masonry test specimens considered in this study

References ID Ω y Ω p δ p δ s
Liu et al. (1981) WZI-1 2.8275 1.2967
WZI-2 3.0066 1.1097
WZI-3 2.8747 1.1672
WZII-1 2.9987 1.0851
WZII-2 3.0944 1.1289
WZII-3 3.0465 1.0576
WZIII-1 2.4423 1.1143
WZIII-2 2.3585 1.1479
WZIII-3 2.3236 1.1021
Yan (1985) A-1 0.0035
A-2 0.0015
A-3 0.0026
B-1 0.0023
B-2 0.0019
B-3 0.0020
B-4 0.0020
C-1 0.0019
C-2 0.0025
C-3 0.0025
C-4 0.0019
D-1 0.0020
D-2 0.0019
D-3 0.0021
D-4 0.0025
Shi and Yi (2000) W7 3.4207 1.1628* 0.0065 0.0152
W8 3.0708 0.0055 0.0170
W9 3.5095 0.0038 0.0143
W10 3.3294 0.0093 0.0196
W11 3.0076 0.0096 0.0188
W12 2.8930 0.0046 0.0161
W13 4.0790 0.0054 0.0179
Yang et al. (2000) Z2-1 2.2011 2.0755 0.0050 0.0062
Z2-2 2.1596 2.1154 0.0037 0.0071
Z3-1 2.3257 2.0179 0.0044 0.0070
Wang et al. (2003) W1-t 2.0288 1.8130 0.0034
W1-m 1.9898 1.6273 0.0019
W1-b 2.0883 1.5086 0.0033
W2-t 2.1669 1.7027 0.0020
W2-m 2.4135 1.7273 0.0034
W2-b 2.1892 1.4599 0.0025
W3-t 2.3573 1.3944 0.0042
W3-m 1.9380 1.7772 0.0021
W3-b 1.9544 1.5771 0.0012
Yu (2003) W-I 3.7781 1.4207 0.0088
W-II 3.9181 1.3707 0.0098
WH-I 4.4380 1.3333 0.0056
WH-II 4.1940 1.4306 0.0073
Wang et al. (2004) MK-1 2.8656 1.0807 0.0033 0.0089
MK-2 2.8907 1.1304 0.0027 0.0061
MK-3 2.6974 1.2000 0.0047 0.0078
MK-4 1.9920 1.5833 0.0052 0.0075
Ye et al. (2004) SW2 3.0766 1.1968 0.0017 0.0050
Zhou (2004) A-1 1.8439 2.7953 0.0015 0.0034
A-2 2.1267 2.2667 0.0015 0.0025
A-3 1.4171 3.7337 0.0016 0.0021
A-4 2.3503 1.8199 0.0008 0.0021
A-5 2.3538 1.9746 0.0007 0.0032
A-6 2.3538 1.9135 0.0009 0.0023
Zhang (2005) W-1 1.9529 1.5840 0.0036 0.0064
W-2 2.1012 1.5375 0.0018 0.0041
W-3 2.5296 1.8042 0.0016 0.0050
W-4 2.5830 1.7826 0.0014 0.0056
Huang (2006) CMC-1 4.2835 1.4194
CMC-2 4.6267 1.2475
Sun et al. (2006) E-1 1.8225 2.4579 0.0008 1.822
E-2 1.8284 2.9180 0.0008 1.828
F-1 3.0506 1.8205 0.0016 3.051
F-2 2.4274 2.2051 0.0018 2.427
G-1 3.0352 1.6771 0.0011 3.035
G-2 3.0352 1.7740 0.0011 3.035
Zhou et al. (2006) W-1 1.6499 0.0006
W-4 1.4059 0.0028
Zhang (2007a) W1 2.2558 1.6286 0.0029
W4 3.7276 1.1500 0.0051
W11 2.7010 1.4143 0.0023
Zhang (2007b) WA-3 3.3375 0.0114 0.0144
WA-4 3.8619 0.0186 0.0220
Gong (2008) WA-1 4.0302 1.4762 0.0068 0.0097
WA-2 4.1756 1.4069 0.0083 0.0126
WA-3 3.8397 1.5000 0.0081 0.0095
WA-4 4.0620 1.3810 0.0094 0.0119
Hao et al. (2008) WL1 4.0302 1.3810 0.0068 0.0104
WL2 3.7437 1.5692 0.0035 0.0062
WL3 3.8397 1.5625 0.0107 0.0131
WL4 3.7120 1.3810 0.0076 0.0119
Yang (2008) Q5 1.4807 2.0600 0.0053 0.0063
Yang et al. (2008) W-1b 1.7569 2.3395 0.0085 0.0131
W-2b 1.7517 2.4249 0.0055 0.0102
W-3b 2.0738 2.3175 0.0054 0.0115
Fang (2009) GP-0.6-1 2.3574 1.5416 0.0005
GP-0.3-1 2.4899 1.3942 0.0038
GP-0.3-2 2.4953 1.2692 0.0020
GD-0.6-1 1.1680 1.8968 0.0033
Han (2009) FQZ-1 2.4913 1.3653 0.0004
FQZ-2 2.7654 1.3133 0.0013 0.0015
FQZ-3 3.3201 1.0451 0.0007 0.0030
FQZ-4 2.8531 1.2771 0.0009 0.0018
Gu et al. (2010) PD10-5-0.6C 4.6932 1.1367 0.0029 0.0051
PD10-10-0.3C 3.4254 1.3550 0.0043 0.0108
PD10-10-0.6C 4.5262 1.3829 0.0041 0.0140
PD10-10-0.9C 5.6517 1.2369 0.0035 0.0077
PD15-15-0.6C 5.8121 1.1118 0.0042 0.0155
PD15-15-0.9C 5.5556 1.1682 0.0037 0.0155
PM-0.3C 4.7068 1.3871 0.0043 0.0075
PM-0.6C 5.2397 1.3043 0.0085 0.0120
Weng (2010) W-1 3.0000 0.0011
W-2 2.4000 0.0016
Zhang (2010) W-1 0.0011 0.0039
Zheng (2010) BCW-1 2.0498 1.7450 0.0017 0.0065
BCW-2 2.2208 1.4000 0.0016 0.0049
BC2 W-1 1.2769 2.0464 0.0018 0.0054
BC2 W-2 1.2980 1.5909 0.0016 0.0042
BC2 W-3 1.6656 1.3700 0.0020 0.0099
BC2 W-4 2.2076 1.6824 0.0021 0.0072
BC2 W-5 1.6874 1.7297 0.0020 0.0060
Liu et al. (2011) WB-1 3.2461 0.0080 0.0166
WB-2 3.1937 0.0107 0.0131
WB-3 3.1623 0.0174 0.0185
WB-4 3.9083 0.0150 0.0173
Wu et al. (2012) HQ2 2.0012 1.5969 0.0016 0.0100
HQ3 2.3499 1.5540 0.0017 0.0120
HQ4 3.0572 1.2482 0.0015 0.0102
HQ5 3.0572 1.4475 0.0015 0.0175
Wu (2012) LSGZ-01 2.7991 1.4044 0.0036 0.0053
ZYGZ-01 2.5177 1.2694 0.0027 0.0058
ZYGZ-02 1.9270 1.3667 0.0030 0.0089
Xiao et al. (2012) TJ-W-1 3.6664 1.4923 0.0026 0.0051
TJ-W-3 4.6799 1.4936 0.0026 0.0075
TJ-W-4 3.7058 1.6317 0.0029 0.0043
Guo et al. (2014) W-1 2.4650 1.7404 0.0044 0.0060
W-2 1.8429 2.4290 0.0050 0.0074
W-3 1.8182 2.5225 0.0050 0.0080
Wang et al. (2014) TW-2 0.0033
Zhang (2014) TW-2 2.8318 2.0603 0.0083
LW-2 1.5588 3.3669 0.0165
  1. * This value is based on the average value provided by Shi and Yi (2000)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Tian, Y., Guan, H. et al. Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis. Bull Earthquake Eng 15, 4791–4820 (2017). https://doi.org/10.1007/s10518-017-0168-9

Download citation

Keywords

  • Masonry structure
  • Sensitivity analysis
  • Parameter uncertainty
  • Regional seismic damage prediction
  • Multiple-degree-of-freedom shear model
  • Time-history analysis