The 2014 Earthquake Model of the Middle East: seismogenic sources

Abstract

The Earthquake Model of Middle East (EMME) project was carried out between 2010 and 2014 to provide a harmonized seismic hazard assessment without country border limitations. The result covers eleven countries: Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Jordan, Lebanon, Pakistan, Syria and Turkey, which span one of the seismically most active regions on Earth in response to complex interactions between four major tectonic plates i.e. Africa, Arabia, India and Eurasia. Destructive earthquakes with great loss of life and property are frequent within this region, as exemplified by the recent events of Izmit (Turkey, 1999), Bam (Iran, 2003), Kashmir (Pakistan, 2005), Van (Turkey, 2011), and Hindu Kush (Afghanistan, 2015). We summarize multidisciplinary data (seismicity, geology, and tectonics) compiled and used to characterize the spatial and temporal distribution of earthquakes over the investigated region. We describe the development process of the model including the delineation of seismogenic sources and the description of methods and parameters of earthquake recurrence models, all representing the current state of knowledge and practice in seismic hazard assessment. The resulting seismogenic source model includes seismic sources defined by geological evidence and active tectonic findings correlated with measured seismicity patterns. A total of 234 area sources fully cross-border-harmonized are combined with 778 seismically active faults along with background-smoothed seismicity. Recorded seismicity (both historical and instrumental) provides the input to estimate rates of earthquakes for area sources and background seismicity while geologic slip-rates are used to characterize fault-specific earthquake recurrences. Ultimately, alternative models of intrinsic uncertainties of data, procedures and models are considered when used for calculation of the seismic hazard. At variance to previous models of the EMME region, we provide a homogeneous seismic source model representing a consistent basis for the next generation of seismic hazard models within the region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams J, Halchuck S, Allen T, Rogers G (2015) Canada’s 5th Generation seismic hazard model for the 2015 National Building Code of Canada. In: 11th Canadian Conference on Earthquake Engineering, 21–24 July, 2015, Victoria, Canada, Paper 93775

  2. Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics. doi:10.1029/2003TC001530

    Google Scholar 

  3. Ambraseys NN, Jackson JA, Melville CP (2002) Historical seismicity and tectonics: the case of the eastern mediterranean and the middle east, international handbook of earthquake and engineering seismology, V.81A, ISBN: 0-12-440652-1

  4. Anderson J (1979) Estimating the seismicity from geological structure for seismic-risk studies. Bull Seismol Soc Am 69:135–158

    Google Scholar 

  5. Anderson JG, Luco JE (1983) Consequences of slip rate constraints on earthquake occurrence relations. Bull Seismol Soc Am 73:471–496

    Google Scholar 

  6. Basili R, Valensise G, Vannoli P et al (2008) The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. doi:10.1016/j.tecto.2007.04.014

    Article  Google Scholar 

  7. Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser ES, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domac H, Fonseca J, García-Mayordomo J, Giardini D, Glavatovic B, Gülen L, Ince Y, Pavlides S, Şeşetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova S, Wössner J (2013a) The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/. doi:10.6092/INGV.IT-SHARE-EDSF

  8. Basili R, Tiberti MM, Kastelic V et al (2013b) Integrating geologic fault data into tsunami hazard studies. Nat Hazards Earth Syst Sci 13:1025–1050. doi:10.5194/nhess-13-1025-2013

    Article  Google Scholar 

  9. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  10. Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23(2):563–584. doi:10.1016/S0191-8141(00)00115-2

    Article  Google Scholar 

  11. Bommer JJ, Akkar S (2012) Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA. Earthq Spectra 28(1):1–15

    Article  Google Scholar 

  12. Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthq Spectra 24:997–1009. doi:10.1193/1.2977755

    Article  Google Scholar 

  13. Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res Solid Earth 97(B1):449–478. doi:10.1029/91JB02165

    Article  Google Scholar 

  14. Copley A, Faridi M, Ghorashi M, Hollingsworth J, Jackson J, Nazari H, Oveisi B, Talebian M (2014) The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau. Geophys J Int 196(1):15–21. doi:10.1093/gji/ggt379

    Article  Google Scholar 

  15. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  16. Crowley H, Monelli D, Pagani M, Silva V, Weatherill G, Rao A (2015) The OpenQuake-engine user manual, global earthquake model (GEM) technical report 2015-09

  17. Danciu L, Giardini D (2015) Global Seismic Hazard Assessment Program—GSHAP legacy. Ann Geophys 58(1):S0109. doi:10.4401/ag-6734

    Google Scholar 

  18. Danciu L, Kale Ö, Akkar S (2016a) The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bull Earthq Eng (2016). doi:10.1007/s10518-016-9989-1

    Google Scholar 

  19. Danciu, L, Şeşetyan K, Demircioglu M, Erdik M, Giardini D (2016b) Input files for OpenQuake used to compute the seismic hazard of the Middle East region within the Earthquake Hazard Assessment of Middle East (EMME) Project. Available at: https://doi.org/10.12686/A3

  20. El-Hussain I, Deif A, Al-Jabri K, Toksoz N et al (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210

    Article  Google Scholar 

  21. Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in Iran region. Geophys J Int 167:761–778

    Article  Google Scholar 

  22. Erdik M, Alpay BY, Onur T, Şeşetyan K, Birgoren G (1999) Assessment of earthquake hazard in Turkey and neighboring regions. Ann Geofis 42:1125–1138

    Google Scholar 

  23. Erdik M, Sesetyan K, Demircioglu MB, Tuzun C, Giardini D, Gülen L et al (2012) Assessment of seismic hazard in the Middle East and Caucasus: EMME (Earthquake Model of Middle East) project. In: Proceedings of 15th world conference on earthquake engineering

  24. Field EH, Arrowsmith RJ, Biasi GP, Bird P, Dawson TE, Felzer KR et al (2014) Uniform California earthquake rupture forecast, version 3 (UCERF3)—the time-independent model. Bull Seismol Soc Am 104(3):1122–1180

    Article  Google Scholar 

  25. Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8

    Article  Google Scholar 

  26. Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geophys 42(6). ISSN 2037-416X

  27. Giardini D, Woessner J, Danciu L, Crowley H, Cotton F, Grünthal G et al. (2013) Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource. doi:10.12686/SED-00000001-SHARE

  28. Grünthal G (1985) The up-dated earthquake catalogue for the German Democratic republic and adjacent areas—statistical data characteristics and conclusions for hazard assessment. In: 3rd International symposium on the Analysis of seismicity and seismic risk, Liblice/Czechoslovakia, 17–22 June 1985 (proceedings vol I, pp 19–25)

  29. Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. doi:10.1007/s10950-012-9302-y

    Article  Google Scholar 

  30. Guidoboni E, Comastri A, Traina G (1994) Catalogue of ancient earthquakes in the mediterranean area up to the 10th century, SGA

  31. Gülen L, Pınar A, Kalafat D, Özel N, Horasan G, Yılmazer M, Işıkara AM (2002) Surface fault breaks, aftershock distribution, and rupture process of the August 17, 1999 Izmit, Turkey Earthquake. Bull Seismol Soc Am 92:230–244

    Article  Google Scholar 

  32. Gülen L, Şeşetyan K, Adamia S, Sadradze N, Gvencadze A, Karakhanyan A et al (2014) Earthquake model of the middle east (Emme) project: active faults and seismic sources second European conference on earthquake engineering and seismology, 2ECEES, 24–29 August 2014, Istanbul, Turkey

  33. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:184–188

    Google Scholar 

  34. Hiemer S, Woessner J, Basili R, Danciu L et al (2014) A kernel-smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe. Geophys J Int. doi:10.1093/gji/ggu186

    Google Scholar 

  35. Hofmann R (1996) Individual faults can’t produce a Gutenberg-Richter earthquake recurrence. Eng Geol 43:5–9. doi:10.1016/0013-7952(95)00085-2

    Article  Google Scholar 

  36. Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245

    Google Scholar 

  37. Kafka AL (2007) Does seismicity delineate zones where future large earthquakes are likely to occur in intraplate environments? Geol Soc Am Spec Papers 425:35–48. doi:10.1130/2007.2425(03)

    Google Scholar 

  38. Kanamori HD, Anderson DL (1975) Theoretical basis for some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1096

    Google Scholar 

  39. Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700

    Article  Google Scholar 

  40. Knopoff L (1964) The statistics of earthquakes in Sourthern California. Bull Seismol Soc Am 54(6):1871–1873

    Google Scholar 

  41. Kulkarni RB, Youngs RR, Coppersmith KJ (1984) Assessment of confidence intervals for results of seismic hazard analysis. In: Proceedings of the eighth world conference on earthquake engineering, San Francisco, pp 263–270

  42. Marco S, Stein M, Agnon A, Ron H (1996) Long-term earthquake clustering: a 50,000-year paleoseismic record in the Dead Sea Graben. J Geophys Res 101(B3):6179–6191. doi:10.1029/95JB01587

    Article  Google Scholar 

  43. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gürkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V et al. (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105(B3):5695–5719

    Article  Google Scholar 

  44. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155(1):126–138. doi:10.1046/j.1365-246X.2003.02023.x

    Article  Google Scholar 

  45. Meletti C, Galadini F, Valensise G, Stucchi M, Basili R et al (2008) A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1):85–108

    Article  Google Scholar 

  46. Mignan A, Danciu L, Giardini D (2015) Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seismol Res Lett 86(3):890–900

    Article  Google Scholar 

  47. Molnar P (1979) Earthquake recurrence intervals and plate tectonics. Bull Seismol Soc Am 69:115–133

    Google Scholar 

  48. Monelli D, Pagani M, Weatherill G, Danciu L, Garcia J (2014) Modeling distributed seismicity for probabilistic seismic-hazard analysis: implementation and insights with the OpenQuake engine. Bull Seismol Soc Am 104(4):1636–1649. doi:10.1785/0120130309

    Article  Google Scholar 

  49. Moschetti MP, Powers PM, Petersen MD, Boyd OS, Chen R, Field EH, Frankel AD, Haller KM, Harmsen SC, Mueller CS, Wheeler RL (2015) Seismic source characterization for the 2014 update of the US national seismic hazard model. Earthq Spectra 31(S1):31–57

    Article  Google Scholar 

  50. Mueller CS (2010) The influence of maximum magnitude on seismic-hazard estimates in the central and eastern United States. Bull Seismol Soc Am 100(2):699–711. doi:10.1785/0120090114

    Article  Google Scholar 

  51. Musson RMW (1999) Probabilistic seismic hazard maps for the North Balkan Region. Ann Geofis 42(6):1109–1124

    Google Scholar 

  52. Musson RMW (2009) Subduction in the Western Makran: the historian’s contribution. J Geol Soc Lond 166:387–391

    Article  Google Scholar 

  53. Musson RM, Sellami S, Brüstle W (2009) Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c). Swiss J Geosci 102(1):107–120

    Article  Google Scholar 

  54. National Research Council (US) (1988) Panel on Seismic Hazard Analysis, Keiiti Aki, National Research Council (US). Committee on Seismology, National Research Council (US). Board on Earth Sciences, National Research Council (US). Commission on Physical Sciences, Mathematics and Resources. Probabilistic Seismic Hazard Analysis. National Academies

  55. Negredo AM, Replumaz A, Villasenor A, Guillot S (2007) Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth Planet Sci Lett 259:212–225

    Article  Google Scholar 

  56. Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V et al (2014) OpenQuake-engine: an open hazard (and risk) software for the Global Earthquake Model. Seismol Res Lett 85:692–702. doi:10.1785/0220130087

    Article  Google Scholar 

  57. Pegler G, Das S (1998) An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres. Geophys J Int 134:573–595. doi:10.1046/j.1365-246x.1998.00582.x

    Article  Google Scholar 

  58. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS, Field N (2015) The 2014 United States national seismic hazard model. Earthq Spectra 31(S1):S1–S30

    Article  Google Scholar 

  59. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–82. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  60. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(BO5411):1–26. doi:10.1929/2005JBOO4051

    Google Scholar 

  61. Renault P (2014) Approach and challenges for the seismic hazard assessment of nuclear power plants: the Swiss Experience. Boll di Geof Teorica ed Applicata 55(1):149–164. doi:10.4430/bgta0089

    Google Scholar 

  62. Ruleman CA, Crone AJ, Machette MN, Haller KM, Rukstales KS (2007) Map and database of probable and possible Quaternary faults in Afghanistan: U.S. Geological Survey Open-File Report 2007-1103, 1 plate

  63. Schmid SM, Slejko D (2009) Seismic source characterization of the Alpine foreland in the context of a probabilistic seismic hazard analysis by PEGASOS Expert Group 1 (EG1a). Swiss J Geosci 102(1):121–148. doi:10.1007/s00015-008-1300-2

    Article  Google Scholar 

  64. Schuster RL, Alford D (2004) Usoi landslide dam and lake Sarez, Pamir Mountains, Tajikistan. Environ Eng Geosci 10(2):151–168

    Article  Google Scholar 

  65. Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J Geophys Res. doi:10.1029/JB089iB07p05681

    Google Scholar 

  66. Schwartz DP, Coppersmith KJ (1986) Seismic hazards: new trends in analysis using geologic data. National Research Council, Washington, DC (USA). Geophysics Study Committee; 266, pp 215–230; DOE/ER/12018–T10

  67. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res Solid Earth. doi:10.1029/2000JB000033

    Google Scholar 

  68. Şeşetyan K, Danciu L, Demircioglu M, Giardini D, Erdik M, Akkar S, Gülen L, Zare M, et al. (2017) The 2014 Earthquake Model of the Middle East: overview and results (this issue)

  69. Sippl C, Schurr B, Yuan X et al (2013) Geometry of the Pamir Hindu Kush intermediate depth earthquake zone from local seismic data. J Geophys Res 118(4):1438–1457. doi:10.1002/jgrb.50128

    Article  Google Scholar 

  70. Stepp JC (1972) Analysis of completeness of earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. National Oceanic and Atmospheric Administration Environmental Research Laboratories, Boulder Colorado, p 80302

    Google Scholar 

  71. Stirling M, McVerry G, Gerstenberger M et al (2012) National seismic hazard model for New Zealand: 2010 update. Bull Seismol Soc Am 102:1514–1542. doi:10.1785/0120110170

    Article  Google Scholar 

  72. Stucchi M, Rovida A, Gomez Capera AA et al (2012) The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J Seismol 17:523–544. doi:10.1007/s10950-012-9335-2

    Article  Google Scholar 

  73. Tatar M, Hatzfeld D, Martinod J, Walpersdorf A, Ghafori-Ashtiany M, Chéry J (2002) The present-day deformation of the central Zagros from GPS measurements. Geophys Res Lett. doi:10.1029/2002GL015427

    Google Scholar 

  74. Tavakoli B, Ghafory-Ashtiany M (1999) Seismic hazard assessment of Iran. Ann Geophys. doi:10.4401/ag-3781

    Google Scholar 

  75. Ullah S, Bindi D, Pilz M, Danciu L, Weatherill G et al (2015) Probabilistic seismic hazard assessment for Central Asia. Ann Geophys. doi:10.4401/ag-6687

    Google Scholar 

  76. Vilanova SP, Nemser ES, Besana-Ostman GM, Bezzeghoud M et al (2014) Incorporating descriptive metadata into seismic source zone models for seismic-hazard assessment: a case study of the Azores-West Iberian Region. Bull Seismol Soc Am 104(3):1212–1229. doi:10.1785/0120130210

    Article  Google Scholar 

  77. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346

    Google Scholar 

  78. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  79. Wesnousky SG, Scholz CH, Shimazaki K, Matsuda T (1983) Earthquake frequency distribution and the mechanics of faulting. J Geophys Res 88:9331–9340

    Article  Google Scholar 

  80. Wheeler RL (2009) Methods of Mmax estimation east of the Rocky Mountains: U.S. Geological Survey Open-File Report 2009–1018. http://pubs.usgs.gov/of/2009/1018/. Accessed 15 Nov 2015

  81. Wiemer S, García-Fernández M, Burg JP (2009) Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d). Swiss J Geol 102(1):189–209. doi:10.1007/s00015-009-1311-7

    Article  Google Scholar 

  82. Wills CJ, Ray J, Weldon RJ, Bryant WA (2008) California Fault Parameters for the National Seismic Hazard Maps and Working Group on California Earthquake Probabilities, US Geological Survey Open File Report 2007-1437A

  83. Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Article  Google Scholar 

  84. Yadav RBS, Tsapanos TM, Yusuf Bayrak, Koravos G Ch (2013) Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas. Pure Appl Geophys 170(3):283–297. doi:10.1007/s00024-012-0488-2

    Article  Google Scholar 

  85. Yeats RS (2012) Active faults of the world. Cambridge University Press, Cambridge

    Google Scholar 

  86. Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75:939–964

    Google Scholar 

  87. Zare M, Amini H, Yazdi P, Şeşetyan K, Demircioglu MB et al. (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the collaborative efforts of various local and regional researchers throughout the project. The following individuals have contributed to EMME-SSM14 in a major way by providing data, specific source models, feedback and comments: Sinan Akkar, Arif Axhundov, Avetis Arakelyan, Tamaz Chelidze, Raffi Durgaryan, Mohsen Ghafory-Ashtiany, Rasheed Jaradat, Sepideh Karimi, Ozkan Kale, Saud Quraan, Dinçer Köksal, Yiğit Ince, Gianluca Valensise, Alexandre Gventcadze, Nino Gaguadze, Mohammad Reza Zolfaghari and M. Tolga Yilmaz. We thank Marco Pagani and Graeme Weatherill at Global Earthquake Model for their help and guidance throughout the project. We also thank Jochen Woessner (SHARE-Project), Stefano Parolai, Dino Bindi and Shahid Ullah (EMCA-Project) for their efforts on cross-border harmonization. Further, we would like to express our gratitude to the OpenQuake IT development team, which provided constant and steady support during the EMME project. More specifically, the support was granted by: Michele Simionato, Daniele Vigano, Lars Butler and Paul Henshaw. M. Sayab acknowledges his former organization, NCE in Geology, Peshawar University, for EMME-related research facilities. Finally, we thank Celine Beauval and an anonymous reviewer for their constructive comments and review of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Danciu.

Additional information

Data and Resources: All datasets collected, compiled, produced and used within the EMME project are available online, open to access at the site of European Facilities for Earthquake Hazard and Risk (http://www.efehr.org). Additional information about EMME project is available at http://www.emme-gem.org.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11310 kb)

Appendix: OpenQuake: tailored to fit

Appendix: OpenQuake: tailored to fit

OpenQuake was used for calculating the seismic hazard over the entire region (Şeşetyan et al. 2017, this issue). OpenQuake is built on open-source and open-standards and freely available (www.globalearthquakemodel.org). The key features of OpenQuake (here we refer to the hazard library as OQ-hazard engine) are the state-of-the art seismic source representation, advance treatment of uncertainties and various options for hazard calculators (Pagani et al. 2014).

We used the default seismic source definitions of OQ-hazard engine (version 1.5) as the blueprints to design our source models; Hence, individual sources were parameterized according to the User’s Manual (Crowley et al. 2015). According to the software manual, geometry parameters and seismicity occurrence models represent each seismic source. The geometry implies definition of source location, style-of-faulting, and depth. In particular, for the area and point sources, the style of faulting is important.

The software allows defining extensive ruptures linked to the magnitude distribution; hence, a seismic source is not anymore a point source. Generation of extensive ruptures, as tuned by style-of-faulting parameters and magnitude, allows correctly computing the distance definitions used by new ground motion models (Bommer and Akkar 2012). The impact of using extensive ruptures on the hazard estimates regarding the point-rupture approximation, leads to a significant increase in the probabilities of exceedence for specific level of motion (Monelli et al. 2014). In our model, the area sources and gridded smoothed seismicity models share the same attributes for style-of-faulting and depth distribution. Specifically, there are three depth values and three style-of-faulting (i.e. normal, thrust, strike-slip) assigned to each individual seismic source.

Style-of-faulting of future earthquake ruptures is assessed source by source based on various data sets, including earthquake focal mechanisms, stress indicators, stress orientation and geological structure. Results of the assessment are relative frequency of strike-slip versus normal and reverse faulting averaged across each seismic source. Style-of-faulting frequency values are treated as aleatory variability and converted to probabilistic weights for seismic hazard integration (see Fig. S4 in the Electronic Supplement of this manuscript).

Additional parameters are the lower and upper seismogenic depth describing the region where source specific extensive ruptures are allowed to propagate. These parameters were obtained mainly from seismicity focal depths, location of top and bottom edges of the faults and the crustal model CRUST 2.0 (Bassin et al. 2000). Crustal faults are modelled as simple faults, and the subduction interface zones are represented as complex faults. A simple fault describes a fault surface projected along strike and dip. A complex fault does not require a dip angle because the geometry can be described by combinations of fault edges to describe top, mid or bottom of a fault surface. Common to all sources is the magnitude scaling relationship (Wells and Coppersmith 1994); the scaling relationship controls the size of floating ruptures as a function of magnitude.

A truncated GR (Gutenberg and Richter 1944) magnitude frequency distribution, defined by the activity parameters (a- and b-value), lower and upper magnitude is used to characterize all seismic sources. Minimum magnitude used in the probabilistic hazard calculation is 4.5 Mw. whereas the upper bounds vary accordingly to the Mmax logic tree (see Fig. S4 in the Electronic Supplement of this manuscript). Mmax is treated as aleatory to overcome the computational difficulties arising from multiple factors including complex seismogenic source model, extensive ruptures generation and software optimization.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danciu, L., Şeşetyan, K., Demircioglu, M. et al. The 2014 Earthquake Model of the Middle East: seismogenic sources. Bull Earthquake Eng 16, 3465–3496 (2018). https://doi.org/10.1007/s10518-017-0096-8

Download citation

Keywords

  • Earthquakes
  • Seismogenic sources
  • Seismic source models
  • Active faults
  • Probabilistic seismic hazard assessment
  • Earthquake Model of the Middle East—EMME