Abstract
The dynamic behaviour of existing masonry buildings mainly depends on the out-of-plane response of the vertical walls. A proper evaluation of their response can be analytically performed considering the dynamic equation of motion of the rigid body, in the framework of rigid in compression no tension material. The above equation is numerically solved with increasing magnitude of the seismic action, until the collapse condition of the wall, due to a lack of equilibrium, is reached. In the paper two local collapse mechanisms are considered, the two sided and the one sided rocking. The influence of considering a simplified trilinear moment-rotation law is also discussed. For each mechanism, the force-reduction factor, defined as the ratio between the seismic acceleration value causing the collapse of the masonry element and the one corresponding to the activation of the rocking motion, is evaluated. The dependence of this factor on the main parameters of the model is deeply investigated by means of numerical analyses, varying the geometrical characteristics of the panel, the energy dissipation model and the features of the seismic input. A power function law between an effective force reduction factor, defined as the ratio of the force reduction factor multiplied for the gravitational acceleration to the peak ground acceleration, and the Housner Spectrum Intensity is identified for both the examined models. These laws allow accounting for the so-called scale effect within a force-based framework. Eventually, novel formulations for evaluating the force reduction factor of two and one sided rocking systems are here proposed. Their effectiveness has been also highlighted considering both spectrum-compatible accelerograms and natural records.
Similar content being viewed by others
References
Al Shawa O, Liberatore D, Sorrentino L (2015) Valutazione Normativa della Sicurezza per Meccanismi Locali di Collasso di Pareti Murarie. 16 Convegno Anidis “L’ingegneria sismica in Italia”. L’Aquila 13–17 settembre, paper 2225
CEN (2005) EN 1998–1:2005, Eurocode 8: “design of structures for earthquake resistance - Part 1: general rules, seismic actions and rules for buildings”. Brussels
CMIT (Circolare Ministero Infrastrutture) (2009) Circolare 2 febbraio 2009 n. 617 Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni” di cui al DM 14 gennaio 2008. Gazzetta Ufficiale della Repubblica Italiana n. 47, Supplemento Ordinario n. 27
Coccia S, Como M (2015) Minimum thrust of rounded cross vaults. Int J Archit Herit Conserv Anal Restor 9(4):468–484. doi:10.1080/15583058.2013.804965
Coccia S, Como M, Di Carlo F (2015a) Wind strength of gothic cathedrals. Eng Fail Anal 55:1–25. doi:10.1016/j.engfailanal.2015.04.019
Coccia S, Di Carlo F, Rinaldi Z (2015b) Collapse displacements for a mechanism of spreading-induced supports in a masonry arch. Int J Adv Struct Eng 7(3):307–320. doi:10.1007/s40091-015-0101-x
Coccia S, Di Carlo F, Imperatore S (2016) Strength reduction factor for out-of-plane failure mechanisms of masonry walls. In: 16th international brick and block masonry conference, June 26–30, Padova, Italy
Costa AA, Arêde A, Penna A, Costa A (2012) Experimental evaluation of the coefficient of restitution of rocking stone masonry façades. In: 15th international brick and block masonry conference
Costa AA, Arêde A, Penna A, Costa A (2013) Free rocking response of a regular stone masonry wall with equivalent block approach: experimental and analytical evaluation. Earthq Eng Struct Dyn 42:2297–2319. doi:10.1002/eqe.2327
D’Ayala D, Shi Y (2011) Modeling masonry historic buildings by multi-body dynamics. Int J Archit Herit 5:483–512. doi:10.1080/15583058.2011.557138
D’Ayala DF, Paganoni S (2011) Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull Earthq Eng 9(1):81–104. doi:10.1007/s10518-010-9224-4
D’Ayala D, Speranza E (2003) Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq Spectra 19(3):479–509. doi:10.1193/1.1599896
D’Ayala D, Spence R, Oliveira C, Pomonis A (1997) Earthquake loss estimation for Europe’s historic town centres. Earthq Spectra 13(4):773–793
De Felice G (2011) Out-of-plane seismic capacity of masonry depending on wall section morphology. Int J Archit Herit 5(4–5):466–482. doi:10.1080/15583058.2010.530339
De Lorenzis L, DeJong M, Ochsendorf J (2007) Failure of masonry arches under impulse base motion. Earthq Eng Struct Dyn 36(14):2119–2136. doi:10.1002/eqe.719
Doherty K, Griffith MC, Lam N, Wilson J (2002) Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls. Earthq Eng Struct Dyn 31(4):833–850. doi:10.1002/eqe.126
Ferreira TM, Costa AA, Vicente R, Varum H (2015) A simplified four-branch model for the analytical study of the out-of-plane performance of regular stone URM walls. Eng Struct 83:140–153. doi:10.1016/j.engstruct.2014.10.048
Giresini L, Fragiacomo M, Lourenço PB (2015) Comparison between rocking analysis and kinematic analysis for the dynamic out-of-plane behavior of masonry walls. Earthq Eng Struct Dyn 44:2359–2376. doi:10.1002/eqe.2592
Hao H, Zhou Y (2011) Rigid structure response analysis to seismic and blast induced ground motions. Proced Eng 14:946–955. doi:10.1016/j.proeng.2011.07.119
Hogan SJ (1992) On the motion of a rigid block, tethered at one corner, under harmonic forcing. Proc R Soc Math Phys Sci 439(1905):35–45. doi:10.1098/rspa.1992.0132
Housner GW (1952) Intensity of ground motion during strong earthquakes. California Inst of Tech Pasadena Earthquake Engineering Research Lab, California
Housner GW (1963) The behavior of inverted pendulum structures during earthquakes. Bull Seismol Soc Am 53(2):403–417
Kounadis AN (2010) On the dynamic overturning instability of a rectangular rigid block under ground excitation. Open Mech J 4:43–57. doi:10.2174/18741584010040100043
Makris N, Konstantinidis D (2003) The rocking spectrum and the limitations of practical design methodologies. Earthq Eng Struct Dyn 32(2):265–289. doi:10.1002/eqe.223
Papantonopoulos C, Psycharis IN, Papastamatiou DY, Lemos JV, Mouzakis HP (2002) Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthq Eng Struct Dyn 31:1699–1717. doi:10.1002/eqe.185
Peña F, Prieto F, Lourenço PB, Campos Costa A, Lemos JV (2007) On the dynamics of rocking motion of single rigid-block structures. Earthq Eng Struct Dyn 36:2383–2399. doi:10.1002/eqe.739
Prieto F, Lourenço PB (2005) On the rocking behavior of rigid objects. Meccanica 40(2):121–133. doi:10.1007/s11012-005-5875-7
Shawa OA, de Felice G, Mauro A, Sorrentino L (2012) Out-of-plane seismic behaviour of rocking masonry walls. Earthq Eng Struct Dyn 41:949–968. doi:10.1002/eqe.1168
Sorrentino L, Masiani R (2007) Risposta fuori del piano di pareti murarie, libere e vincolate in sommità, a segnali naturali. 12 Convegno Nazionale “L’Ingegneria Sismica in Italia”, Pisa 10-14.-06.2007, paper 124
Sorrentino L, Masiani R, Decanini LD (2006) Overturning of rocking rigid bodies under transient ground motions. Struct Eng Mech 22(3):293–310. doi:10.12989/sem.2006.22.3.293
Sorrentino L, Kunnath S, Monti G, Scalora G (2008a) Seismically induced one-sided rocking response of unreinforced masonry façades. Eng Struct 30(8):2140–2153. doi:10.1016/j.engstruct.2007.02.021
Sorrentino L, Masiani R, Griffith MC (2008b) The vertical spanning strip wall as a coupled rocking rigid body assembly. Struct Eng Mech 29(4):433–453. doi:10.12989/sem.2008.29.4.433
Sorrentino L, Al Shawa O, Decanini LD (2011) The relevance of energy damping in unreinforced masonry rocking mechanisms. Exp Anal Investig Bull Earthq Eng 9(5):1617–1642. doi:10.1007/s10518-011-9291-1
Yim CS, Chopra AK, Penzien J (1980) Rocking response of rigid blocks to earthquakes. Earthq Eng Struct Dyn 8(6):565–587. doi:10.1002/eqe.4290080606
Zhang J, Makris N (2001) Rocking response of free-standing blocks under cycloidal pulses. J Eng Mech 127(5):473–483. doi:10.1061/(ASCE)0733-9399(2001)127:5(473)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Coccia, S., Di Carlo, F. & Imperatore, S. Force reduction factor for out-of-plane simple mechanisms of masonry structures. Bull Earthquake Eng 15, 1241–1259 (2017). https://doi.org/10.1007/s10518-016-9976-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10518-016-9976-6